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Abstract This paper reports on the aims, the approach,

and the results of the European project RACE. The project

aim was to enhance the behavior of an autonomous robot

by having the robot learn from conceptualized experiences

of previous performance, based on initial models of the

domain and its own actions in it. This paper introduces the

general system architecture; it then sketches some results in

detail regarding hybrid reasoning and planning used in

RACE, and instances of learning from the experiences of

real robot task execution. Enhancement of robot compe-

tence is operationalized in terms of performance quality

and description length of the robot instructions, and such

enhancement is shown to result from the RACE system.

1 Project Aim and Demonstration Domain

RACE (Robustness by Autonomous Competence

Enhancement) is a project funded by the European Com-

mission under the 7th Framework Programme and running

from 12/2011 to 11/2014. The partners are those institutes

from which this paper is authored. This short project report

summarizes the RACE methodology of working towards

achieving these aims, and it sketches main project results,

as visible about half a year before the end of the project.

The overall aim of RACE as set out in the description of

work was

to develop an artificial cognitive system, embodied

by a service robot, able to build a high-level under-

standing of the world it inhabits by storing and

exploiting appropriate memories of its experiences.

Experiences will be recorded internally at multiple

levels: high-level descriptions in terms of goals, tasks

and behaviours, connected to constituting subtasks,

and finally to sensory and actuator skills at the lowest

level. In this way, experiences provide a detailed

account of how the robot has achieved past goals or

how it has failed, and what sensory events have

accompanied the activities.

Contributions were foreseen in the description of work

to advance the state of the art along three lines:

1. robots capable of storing experiences in their memory

in terms of multi-level representations connecting

actuator and sensory experiences with meaningful

high-level structures,

2. methods for learning and generalising from experi-

ences obtained from behaviour in realistically scaled

real-world environments,
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Örebro University, Örebro, Sweden
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3. robots demonstrating superior robustness and effec-

tiveness in new situations and unknown environments

using experience-based planning and behaviour

adaptation.

So the thrust of the project was clearly of a conceptual

nature. Yet, to demonstrate an integrated system and to

have it learn from experiences, a physical robot and a

demonstration domain are clearly needed. An ‘‘academic’’

demonstration domain was used to focus on the conceptual

issues rather than application requirements, and to keep

low the overhead for providing permanently the real-life

demonstration scenario and for modeling it in a good

simulation environment that would allow project partners

to work independently at their sites between code inte-

gration events.

The demonstration domain is an AI and Robotics clas-

sic: a (mockup) restaurant with a robot waiter. The robot,

Trixi, Fig. 1, is a PR2 with an additional RGB-D camera on

top of its head. The task spectrum of Trixi is to serve guests

in the mockup restaurant. Figure 2 schematically shows

one of a number of several scenarios defined for the res-

taurant domain; these scenarios are available both physi-

cally in a lab room and in simulation (Gazebo). Having

such fixed scenarios allows tasks to be executed under

somewhat controlled environment conditions to compare

robot performances over different degrees of experience in

the domain on Trixi’s side.

In the sparsely populated scenario in Fig. 2, it would

make sense to give Trixi the order ‘‘Serve mug1 to

guest1!’’ or ‘‘Serve coffee to guest1!’’, both yielding the

same service. It is also conceivable to teach Trixi how to

serve: ‘‘Pick up the mug at the counter, bring it to the guest

at table1—this is how to serve a coffee’’.

It is assumed that basic robot behavior (such as navi-

gation, object handling, object recognition) is available on

Trixi—actually, RACE has started from standard capabil-

ities available for a PR2 in ROS [17], cf. Sect. 2.1 for an

explanation of the control architecture. Standard restaurant

action schemata for a waiter, such as serving something to

some guest, are available in a pre-defined form as Hierar-

chical Task Network (HTN) methods, cf. Sect. 3.1 for

more on planning in RACE. Trixi was able to physically

perform such restaurant standard actions in closed-loop

plan-based control from early on in the project, based on

the control architecture explained later (Sect. 2.1). This

state-of-the-art approach was taken as the ground level of

performance compared to which competence could be

enhanced from experience by methods to be developed in

the project.

Now what are reasons and opportunities for competence

enhancement here? In a mundane domain like a restaurant,

there is an infinite set of possibilities for variations of tasks

to be executed in the light of actual conditions, even though

the domain itself and the actions for a waiter (human or

robot) to perform are highly schematized. These variations

are the sources of possible disturbances for Trixi’s execu-

tion—actually, they are the sources of the brittleness of

autonomous robot performance in real-world settings that

is so often deplored. They would in general result in non-

nominal execution of the planned behavior, or in needed

variations of the planned behavior at execution time. For

example, unknown at planning time, paths may be blocked

for the robot, the guest may have changed his seat on the

table, standard placing areas on the table may be occupied

by belongings of the guest, standard manipulation areas for

the robot to stand while serving the table may be blocked, a

newly arriving guest may interrupt plan execution, and so

on. Conditions on all levels of description of robot per-

formance (temporal, spatial, causal, perceptional, kine-

matic, dynamic) may actually deviate from the standard—

Fig. 1 The PR2 robot Trixi grasping mugs from the counter

Fig. 2 Schema of an instance of the RACE demo scenarios in the

restaurant domain. The counter of Fig. 2 is the counter1 on the left.

See text for more explanations

Künstl Intell

123



no matter how the standard is formulated in detail. The

RACE idea is that actually experiencing such deviations

and learning ways how to deal with them (cf. Sect. 3.4)

should lead to more robust performance in the domain.

Moreover, being able to conceptualize such experiences

and thereby to generalize them and make them amenable to

the robot’s own reasoning would result in a transfer from

concrete experiences to classes of situations in which to

change or adapt the standard behavior.

2 Approach

It is apparent from the overall aim of RACE that the

project would face at least three methodological issues

(which it shared with quite a few companion projects).

First, a bootstrapping problem: to generate robot experi-

ences to learn from, the project had to rely on a fully

integrated and functional robot system in a suitable

environment from the project start. Second, an architec-

ture problem: to learn from conceptualized experiences of

its own past behavior based not only on external features

(‘‘sensor streams’’), but also on the internal control

knowledge that led to generating the past behavior, all

that data and knowledge has to be explicit and available

for learning. Moreover, to be able to change its own

behavior as a result of learning, the control knowledge

yielding the behavior has to be explicit for the control.

Third, an evaluation problem: to demonstrate competence

enhancement after learning from experience, some per-

formance metrics need to be used that would allow a

sensible before-after comparison.

This section sketches the RACE solutions to these three

issues.

The central point to solving the bootstrapping problem

for RACE was early integration. The project has generated

in its first year a fully integrated and functional robot in the

restaurant domain with an initial instance of its target

control architecture (cf. Sect. 2.1) in place. This was made

possible by

– committing to a particular version of the above-

described demo domain;

– using a PR2 robot and ROS as readily available

hardware and software frameworks, respectively;

– using prior existing standard processing and reasoning

modules as base systems wherever possible, e.g., for

planning and sensor data interpretation;

– defining the internal knowledge-interchange language

based on a standard, namely, Description Logics;

– and committing early to the basic robot control

architecture, i.e., to a solution of the second problem

addressed above.

Of these items, we will only detail the architecture issue,

treated next; but we want to emphasize that the cross-topic

and cross-workpackage results achieved in the project are

to a large degree due to this early integration made possible

in a joint effort by the partners.

The approaches to the control architecture and evalua-

tion problems are described next in some detail.

2.1 Control Architecture Approach

The cornerstone of the RACE architecture (Fig. 3) is the

Blackboard. It mainly contains fluents, i.e., ground facts of

the Description Logic (DL) ontology (executed actions,

world state propositions, etc.), with begin and end time-

stamps. It is implemented as an RDF database. We decided

to use a classical, ‘‘flat’’ blackboard in the project to allow

for maximal flexibility of information flow between mod-

ules, including reasoning and learning modules, and for

freely adding and exchanging versions of modules. This

strategic advantage clearly comes at the cost of hard-wiring

a bottleneck into the architecture; yet, the benefit has out-

weighed the cost in RACE.

The other modules for perception, reasoning, planning

and execution communicate by reading selected types of

information from the Blackboard, processing this infor-

mation and writing back their outputs. So the Blackboard

serves two roles: from the fluents on it, the current state as

well as past state information can be derived; and it con-

tains complete experience records, which can be concep-

tualized later.

When a new planning goal is entered by the user, an

HTN Planner queries the Blackboard to build its initial

planning state, then writes the generated plan back into the

Blackboard. Initially, SHOP2 [13] was used, later replaced

by the planner sketched in Sect. 3.1. The stored plan

includes operators’ preconditions and effects as well as the

hierarchy of expanded HTN methods. The plan is picked

up by the Execution Monitor, which dispatches the planned

actions to the robot platform, mapping them to its closed-

loop control modules. During execution, the monitor logs

the executed actions, as well as success or failure infor-

mation, in the Blackboard.

ROS [17], as used on Trixi, already provides many

capabilities (e.g., for manipulation or navigation) as ROS

actions; others were added. The robot provides continuous

data about its own status (such as joint angles) as well as

data from its sensors. The Perception module discretizes

this information into symbolic, time-stamped fluents.

The OWL ontology stores the robot’s conceptual

knowledge. It provides a common representation format,

from which the knowledge used by all other reasoners is

generated. Spatial, temporal, resource and ontological

reasoners as well as a high-level scene interpretation
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module contribute higher-level semantic information to the

experiences via the Blackboard.

Background processes responsible for experience

extraction (grouped in an Experience Extractor module)

and conceptualization (Conceptualizer) support a long-

term learning loop, resulting in more robust and flexible

future plans. The architecture is detailed in [20].

2.2 Evaluation Approach

To evaluate success for a given task in a given scenario, we

measure the compliance of the actual robot behavior to the

intended ideal behavior for that task in that scenario. Fig-

ure 4 illustrates this principle: the trace of a given execu-

tion of Trixi is compared to a specification of what the

ideal behavior should be, resulting in a ‘‘Distance to Ideal

Model’’ (DIM) measure.

Discrepancies between the observed and the ideal

behavior can originate from errors of four different types:

Conceptual, Perceptual, Navigation and/or Localization,

and Manipulation errors. The latter three types of errors

are, to some degree, platform specific. Our metrics focus on

quantifying conceptual errors.

Conceptual errors arise from discrepancies between the

knowledge used by the robot and the one encoded in the

specification of the ideal behavior. We call these discrep-

ancies inconsistencies. Again, they can be of four types: (1)

Temporal, (2) Spatial, (3) Taxonomical, and (4) Compo-

sitional. The DIM metric chosen in RACE is the weighted

sum of the numbers of the inconsistencies (1–4), respec-

tively, lower DIM values signaling better behavior.

In addition to estimating the effectiveness of learned

knowledge by DIM, the Description Length (DLen, [19])

of the instructions given to the robot to achieve a goal

matters. Normally, longer descriptions could yield better

DIM as suggested by the solid line in Fig. 5. After learning

from experiences, still successful or even more successful

(even lower DIM) behavior following shorter instructions

would be indicative of the effectiveness of the learned

knowledge. This may indirectly provide a measure of how

general the knowledge is, too, if applied to a wide range of

scenarios and initial conditions.

So, the general RACE aim of designing learning and

reasoning tools for a robot to autonomously and effectively

increase its competence was operationalized as: make it

possible for a robot to collect experiences allowing it to

perform at lower DIM and shorter DLen.

3 Results

In addition to the overall system behavior, RACE has

yielded a number of results in the individual modules
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architecture; modified from [20]
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model of the ideal behavior for the specific scenario
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to achieve correct behavior (low DIM). The enhancement of

competence is indicated by the transition from the solid line to the

dashed line
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shown in Fig. 3. They are sketched next. Details are in the

references and on the website [18].

3.1 Hybrid Reasoning and Planning

To enable early integration as mentioned in Sect. 2, off-the-

shelf planners were used in the beginning of the project. The

goal was to analyze the limitations of the state of the art and

develop an integrated planning system to overcome them.

For task planning, HTN planning [5] proved to be useful for

improving the robot’s performance based on experience: the

plan generation itself is fast, and the plans are robust and

have a structure that can be used for learning.

While employing the off-the-shelf SHOP2 HTN planner

was good for early integration, it was evident that state-of-

the-art planning techniques were inadequate for the pur-

poses of RACE: none of them could leverage the full

knowledge that the project set out to learn from experience.

The key issue is that this knowledge is hybrid addressing

diverse semantics. For example, Trixi should serve mug1

before the coffee gets cold, which requires reasoning in

temporal knowledge. Similar arguments can be made about

resource, spatial, causal, kinematic, and other forms of

knowledge.

With the aim of building a planner that could leverage

the different types of knowledge learned by the robot, we

developed a general approach to hybrid reasoning: in a

nutshell, it is based on a backtracking search algorithm that

systematically explores the Cartesian product of sub-

problems posed by the different fragments of knowledge

possessed by the robot. Knowledge is represented as con-

straints (temporal, spatial, resource and causal relations),

and the algorithm enforces the mutual feasibility of all

constraints through backtracking and specialized hybrid

reasoning procedures, called meta-constraints; the system

for handling the constraint satisfaction problem (CSP) on

these diverse knowledge levels is the Meta-CSP sys-

tem [11]. Spatial knowledge in particular is represented in

ARAþ, a novel spatial calculus that allows to uniformly

account for metric and qualitative spatial knowledge in the

sense-plan-act loop. Details of the hybrid planning

approach and the KR formalisms used are presented in [11]

(see also videos at [18]).

Although capable of combining task planning with other

forms of reasoning, the approach alone does not leverage

sophisticated planning heuristics, nor does it provide

hierarchical decomposition capabilities in its domain

specification language. Therefore, HTN hierarchization and

and decomposition methods were put on top of the basic

hybrid Meta-CSP planner, using the SHOP2 Total-order

Forward Decomposition (TFD) algorithm for focusing

search in the large combined search space.

The notion of using different types of knowledge at

planning time was also leveraged for plan execution,

through what is informally called a ‘‘semantic’’ execution

monitor. This module continuously assesses plan feasibility

in the light of additional information gathered during

execution, and dispatches planned actions when their pre-

conditions are fulfilled. As pointed out in [8], the planner’s

knowledge and that of the semantic execution monitor need

not overlap completely: some of it may be execution-spe-

cific for improving robustness and enabling early failure

detection.

3.2 Prediction

RACE uses the high-level scene interpretation system

SCENIOR [2] for the robot to predict events and occur-

rences that may arise from a current situation. Trixi can

envision possible developments of the environment as well

as the impact that such developments may have on its own

activities. The robot may use the results of such a predic-

tion cycle to update the current situation before planning,

thus producing more robust plans. For instance, based on

its past experience, the robot may predict the likely pre-

sence of an obstacle at a relevant area (e.g., at one of the

manipulation areas from which the guest can be served in

Fig. 2). When planning its path towards the guest, the robot

may therefore avoid such likely occupied areas. In this

approach the robot has conceptual knowledge about

occurrences in the world and about its own activities,

represented in the ontology and in constraints expressed as

Semantic Web Rule Language (SWRL) rules. Such con-

ceptual knowledge is modeled or acquired by conceptual-

izing experiences collected in the robot’s memory.

Predictions are then generated by constructing models for

explaining both incoming evidence and goals assigned to

the robot as parts of the conceptual knowledge, this way

generating possible future events, as detailed in [9].

Moreover, SCENIOR’s prediction mechanism was

enhanced with additional functionalities enabling the robot

to extract not only the independent events from a given

prediction but also to rank alternative predictions by their

probability based on how frequently the predicted activities

occurred in the robot’s past experience. This will allow the

system to focus on the causally relevant part of the most

likely prediction during symbolic plan creation at planning

time.

A second prediction approach in RACE [21] provides

prediction during plan execution. It predicts non-nominal

conditions, thereby improving system robustness. Non-

nominal conditions in that sense are conditions that cannot

be considered at planning time with purely symbolic

planning approaches, such as robot manipulation failures,

collisions, or object toppling events. This approach bases
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prediction upon commonsense physics, which is provided

by the physics engine ODE used in Gazebo,1 the standard

simulator in ROS. This allows detailed execution failures

to be predicted, such as collision during manipulation or

toppling of carried objects while the robot is moving fast in

the environment. Based on the underlying simulation, this

prediction is capable of delivering physics-based effects

and results, thus generating possible future events, as well

as simulated sensor data. To trigger prediction, so-called

‘‘imagination operators’’ are added to the planning domain.

They are related to ordinary robot actions such as picking

up an object and are predicted (executed in simulation)

before being executed in reality. We refer to this prediction

approach as robot imagination.

3.3 Object Perception and Anchoring

The object perception system creates and maintains a

representation of the locations of objects in the scene based

on RGB-D data. This involves a set of capabilities orga-

nized as a pipeline:

– search the scene for objects not previously detected;

– visually track the detected objects to estimate their

current poses;

– extract object features and recognize their categories

based on learned knowledge;

– anchor perceived objects to symbolic instances in the

blackboard.

The system must store object perception data as well as

object category knowledge. However, the characteristics of

perceptual information in general differ much from those

of semantic information: while semantic information is

symbolic and relational, perceptual data is typically

numeric. To accommodate efficient storage and retrieval of

both types of information, the RACE architecture features

two memory systems working in parallel: a semantic

memory system (the blackboard) and a perceptual memory

system, cf. Sect. 2.1.

Three main design options address key computational

issues involved in processing and storing perception data: a

lightweight NoSQL database (leveldb) is used to imple-

ment the perceptual memory; a thread-based approach with

zero copy transport of messages is used in implementing

the modules; and a multiplexing scheme for processing

different objects in the scene enables parallelization.

Object categories are learned with user mediation, as

described in Sect. 3.4, and stored in the perceptual mem-

ory. An anchoring module aggregates information from the

object trackers into a probabilistic graphical model of all

objects in the scene (including those not currently in view).

Next, it uses probabilistic knowledge about typical geo-

metric context between objects to jointly classify all

objects. Finally, it updates the poses and object categories

of objects on the blackboard to reflect the new maximum

a-posteriori configuration of objects. In this way, object

category symbols and object symbols used in semantic

memory are grounded in the perceptual memory [4, 16].

The RACE object perception system is fully integrated in

the PR2. A video demonstrating this is available.2

3.4 Learning

Learning is central to RACE, where the robot uses static

and dynamic experiences to learn about static scenes, the

environment, and its own activities for enhancing its

competence to operate in its environment.

The human plays an important role in the robot’s

learning process. For instance, the human can teach cate-

gories of objects, methods for performing tasks and failure

recovery strategies. An ontology of user instructions was

defined and a simple user interface developed for this

purpose. Experience extraction modules were developed to

filter, segment and transform the raw data stream, pro-

ducing experience records stored in memory. Segmentation

and filtering of experiences are largely based on heuristics.

In the case of supervised experience acquisition, experi-

ence extraction is triggered by teaching actions from the

user [10]. These experiences are then conceptualized,

leading to the formation and update of different concepts.

An object conceptualizer was developed to support the

learning and recognition of object categories in an open-

ended way [7, 16]. This means that neither the categories

nor the observations (experiences) that will support the

learning are known in advance. Through pointing and

labeling, a user triggers the extraction and recording of an

object experience, and the respective conceptualization

Fig. 6 The object perception and learning system interface

1 http://gazebosimorg/. 2 http://youtu.be/XvnF2JMfhvc.
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(see Fig. 6). An instance-based approach is adopted, in

which an instance is stored when the robot fails to recog-

nize its category. Recognition uses a nearest-neighbor

approach with a distance measure normalized by an intra-

category distance. Target objects too far from the known

categories are judged to belong to an unknown category.

For more robust and flexible future robot task plans, an

approach was developed to support the extraction and

conceptualization of robot activity experiences [12]. After

applying temporal segmentation heuristics, the experience

data (a set of occurrences) is filtered using a graph sim-

plification method based on ego networks [15]. Robot

activity experiences are then conceptualized through

deductive generalization, abstraction and feature extrac-

tion. The result is an activity schema that can be used as a

method to solve future similar problems as well as a guide

(or heuristic) to solve related (not strictly similar)

problems.

To operate in an environment, it is important for the

robot to understand the static scene layouts, as the scenes

give the context for certain tasks, such as objects and

activities to expect. It is also desirable for robots to be able

to use human supervision and learn from different vague

and incomplete input sources (perception, gestures, verbal

and textual descriptions etc). In the RACE project, we

approach this problem by converting data from different

sources into relational format using spatial and temporal

relations and then converting this data into graphs [4].

Information from different sources can be compared and

contrasted using graph similarity measures to learn rela-

tional knowledge and models. The results obtained in the

restaurant domain where we ground language in perception

are encouraging, although some of the components (robust

perception and natural language parser) need improvement

for the whole system to be completely automatic.

The robot should also be able to recognize environ-

mental activities so it can react appropriately. The RACE

approach is based on qualitative and quantitative spatio-

temporal features that encode the interactions between

human subjects and objects in an abstract and efficient

manner [3, 22]. As a part of this research, we are con-

structing a semantically rich benchmark video dataset

characterizing typical (simple and compound) environ-

mental activities found in restaurants, which will be made

public upon completion.

In RACE, robot activities are described by composi-

tional hierarchies connecting activity concepts at higher

abstraction levels with components at lower levels, down to

action primitives of the robot platform. An obvious learn-

ing curriculum is therefore to let the robot construct new

compositional structures based on existing activity con-

cepts. In an approach described in detail in [14], Example-

Based Compositional Learning (EBCL) is realized by

constructing tentative concepts from examples and merg-

ing the concepts by computing a Good Common Subsumer

(GCS), approximating a Least Common Subsumer (LCS,

[1]). For example, a new concept ‘‘ServeACoffee’’ was

constructed from services to guests at varying positions,

performed with detailed instructions. EBCL suggests

innovative solutions for at least three aspects: (i) Relevance

analysis, i.e., determining objects and relations which are

relevant for a new activity concept, (ii) a learning curric-

ulum where positive examples lead to a learnt concept with

monotonously increasing generality, never surpassing the

intended concept, and (iii) a DL-based KR framework that

can be mapped into graphical representations as used in the

structure-mapping theory of Cognitive Science [6].

Besides learning from positive examples, EBCL also

includes concept adaptation (generalizing a tentative con-

cept to be applicable to a new situation) and concept

refinement based on negative examples.

4 Summary of Achievements

The RACE project has developed, implemented and dem-

onstrated in an integrated approach a robot control system

able to improve its behavior by learning from conceptual-

izations of its own execution experiences. Central

achievements include:

– a general approach for concurrently reasoning about

diverse types of symbolic and metric knowledge, based

on the notion of constraint reasoning at different levels

of abstraction (Meta-CSP);

– Meta-CSP based algorithms for planning with domain

specifications that include spatial, temporal, resource,

causal and ontological knowledge;

– an approach to plan-based robot control that allows

planning knowledge about deliberate robot behavior to

be complemented by semantic execution monitoring

and prediction;

– an object perception and learning system that learns

object categories in an incremental and open-ended

fashion with user mediation;

– an approach to learn conceptual activity descriptions

from few examples and apply them to future tasks

(‘‘competence enhancement from experience’’);

– a method for grounding noun phrases connected by

spatial relations in perceived static scenes.

To demonstrate an increase of robot competence, RACE

has shown instances of DLen reduction by learning and of

DLen and DIM reduction by handcrafted changes (‘‘serve

coffee’’ example). The final demonstrator, to be finalized

after publication of this paper, will include instances of
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learned DLen and DIM reductions in the restaurant

domain.
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13. Nau D, Muñoz-Avila H, Cao Y, Lotem A, Mitchell S (2001)

Total-order planning with partially ordered subtasks. In: Pro-

ceedings of IJCAI

14. Neumann B, Hotz L, Rost P, Lehmann J (2014) A robot waiter

learning from experiences. In: Proceedings of MLDM

15. Newman MEJ (2003) Ego-centered networks and the ripple

effect. Soc Netw 25(1):83–95

16. Oliveira M, Lim GH, Seabra Lopes L, Kasaei SH, Tomé AM,
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