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Abstract

A two-step parameter-free approach for non-rigid medical image

registration is presented. Displacements of boundary structures are

computed in the �rst step and then incorporated as hard constraints

for elastic image deformation in the second step. In comparison to tra-

ditional non-parametric methods, no driving forces have to be com-

puted from image data. The approach guarantees the exact corre-

spondence of certain structures in the images and does not depend

on parameters of the deformation model such as elastic constants.

Numerical examples with synthetic and real images are presented.

1 Introduction

Numerous applications in modern medical imaging deal with non-rigid im-

age registration. Examples are image-atlas as well as multi-modality image

registration in neurosurgery. There, a three-dimensional image (deformable

template) has to be completely transformed onto another one (study).

One group of methods dealing with non-rigid image registration is the

so-called non-parametric methods, where the degrees of freedom of admis-

sible deformations are not de�ned by a �xed number of parameters [1], [3].

The non-parametric methods model the non-rigid transformations as defor-

mations of physical bodies (solids, liquids) caused by applied forces. The

traditional image registration scheme using non-parametric methods is the
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following: Applied forces are �rst derived from image data using some sim-

ilarity measure and then used to deform the template image driving it to a

correspondence with the study image.

In this paper, we propose a two-step registration approach based on elas-

ticity theory. In the �rst step, we determine point correspondences of some

boundary structures in both images by using an active contour model also

known as snake model. In the second step, we elastically deform the tem-

plate image by using the prescribed values of displacements of boundary

structures obtained in the �rst step incorporated as hard constraints in ad-

dition to the conditions on the image boundary. This approach has several

advantages compared to traditional methods. i) No driving forces have to be

derived from image data. For multi-modality images using a local similarity

measure, this is known to be a di�cult problem. ii) As a consequence, the

remaining parameters of the deformation model (elastic constants) drop out

from the model and it becomes completely parameter-free. iii) It can always

be guaranteed that the required deformation is obtained and that certain

structures in the template are exactly matched with those of the study.

Relationship to Other Work

Application of non-parameteric methods to medical image registration orig-

inated from the work of Broit [2], where images were represented as pieces

of rubber and the cross-correlation coe�cient between two images was used

for the derivation of forces. This linear elastic model has been improved to

increase the speed of computations and to avoid local minima [1], [15]. Two

main drawbacks of this model are the assumption of small displacements and

the usage of a local similarity measure. Gee et al. [11] proposed a probabilis-

tic approach based on the �nite element method which has been reported to

have properties similar to those of [2], [1].

Another group of non-parametric methods which is based on the prin-

ciples of 
uid mechanics has been introduced by Christensen et al. [3], [4].

These methods use properties of 
uids that do not carry memory about their

initial state, thus allowing large deformations. However, a local similarity

measure is still used, which considerably limits the applicability of the 
uid

model as a general model for registration problems.

The present paper describes a further development of the approach intro-

duced in [14] and is closely related to the work of Davatzikos et al. [10], [9],

where no local similarity measure is used and external forces are de�ned on

the basis of correspondence of boundary structures such as the outer cortical

boundary and the ventricles. The principal di�erence to our approach is,

however, that we do not use any external forces. As a consequence, parame-
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ters of the deformation model, such as elastic constants, are not required for

our approach. Incorporation of known displacements as hard constraints in

the model allows the exact matching of the boundary structures.

In the following, we describe the two steps of our registration approach, its

discrete representation, and present some numerical examples with synthetic

and real images.

2 Two-Step Registration Model

In this section, we present the two steps of our registration approach. The

snake model in the �rst step was used for demonstration purposes in order

to de�ne simple point correspondences between boundary structures in two

dimensions. It will be replaced in the future by more e�cient methods. The

elastic model is presented for the three-dimensional case.

2.1 First Step: Snake Model

Snakes were �rst proposed by Kass et al. [13] as a general energy minimizing

model which can be applied to numerous problems in computer vision (edge

detection, tracking of moving objects, etc.). Since the time of introduction of

snakes, several improvements have been made in the model (see, for example,

[8], [7]). In this paper, we use the original model from [13].

Snakes are parametrically de�ned curves v(s) = (x(s); y(s)). The snake

model minimizes the following energy:

Esnake =

Z



f�(s)kv0(s)k2 + �(s)kv00(s)k2 + P (v(s))g ds (1)

consisting of the internal energy of the curve and the potential P correspond-

ing to the external forces derived from image data. Two parameters � and

� control elastic properties of the snake. Since we are interested in �nding

edges, we use the following potential:

P (v(s)) = �jrI(v(s))j; (2)

where I(v(s)) denotes the image function. The result is a curve converging

to the boundary of the object when placed close enough to it.

2.2 Second Step: Linear Elastic Model

Here, we present outlines of the variational formulation of the three-

dimensional linearized elasticity problem.

3



Let 
 be an open, bounded, connected subset of R3 with a Lipschitz-

continuous boundary � (� = �
0
[ �

1
; �

0
\ �

1
= ;). We de�ne a normed

vector space

V := fv = (v
1
; v

2
; v

3
)t 2 (H1(
))3; vi = 0 on �

0
� �; i = 1; 2; 3g:

The variational problem of the linearized elasticity which couples dis-

placements in elastic materials with applied body and surface forces can be

formulated as [5]: Find u 2 V such that

a(u;v) = f(v); 8v 2 V; (3)

where the symmetric bilinear form a(u;v) and the linear form f(v) are de-

�ned as

a(u;v) =

Z



f�(r � u)(r � v) + 2�

3X
i;j=1

eij(u)eij(v)g dx; (4)

f(v) =

Z



f � v dx +

Z
�1

g � v d
: (5)

Here, f = (f
1
; f

2
; f

3
)t 2 (L2(
))3 and g = (g

1
; g

2
; g

3
)t 2 (L2(�

1
))3 denote

applied body and surface forces respectively,

eij(v) = eji(v) =
1

2
(@jvi + @ivj); i; j = 1; 2; 3 (6)

is the linearized strain tensor, u;v 2 V denote the displacement �eld, � and

� are Lam�e elastic constants.

In the following, we use a simpli�ed model by supposing � = �
0
, and

setting the parameter � to zero. The last choice is quite common for non-

rigid registration problems, because in that case objects in images are allowed

to grow without being laterally shrunk [1], [4].

The elastic model is now: Find u 2 V such that

a(u;v) = f(v); 8v 2 V; (7)

where

a(u;v) =

Z



2� (e(u); e(v)) dx; (8)

f(v) =

Z



f � v dx: (9)

Here (� ; �) denotes the usual matrix inner product.
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Figure 1: Deformation with prescribed point displacements of a 3D synthetic

image. Top/left: Prescribed displacements. Top/right: Computed 3D dis-

placement �eld. Bottom: Horizontal layers 3, 4, 5 from the 3D computed

displacement �eld above.

From (8)-(9), one can see that the parameter � can now be considered

as a scaling coe�cient for the applied forces. Since we use prescribed dis-

placements instead of applied forces, the elastic model becomes completely

parameter-free.

It can be shown that the problem (7) has a unique solution (see [14], [6] for

details). In the next section, we will discuss the �nite element discretization

of the problem (7).

2.3 Discrete Representation

Following [13], we solved Euler equations corresponding to the snake

model (1) iteratively by approximating the derivatives with �nite di�erences

and using constant parameters � and �.

For the discretization of the elasticity problem (7), we used the Galerkin

method [5]: By replacing the space V with a �nite-dimensional subspace
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Figure 2: Two-step deformation with prescribed displacements. Left: Two

corresponding boundary structures. Middle: Deformation of a synthetic im-

age. Right: The same deformation applied to a rectangular grid.

VN := spanf�
1
; : : : ;�Ng, we seek a discrete solution to the problem: Find

uN 2 VN such that

a(uN ;vN) = f(vN); 8vN 2 VN : (10)

The solution vector uN = fuig is obtained as a solution of the system of

linear equations:

NX
i=1

ui

Z



f

3X
k;l=1

ekl(�i)ekl(�j)g dx =
1

2�

Z



fj � �j dx; j = 1; : : : ; N: (11)

The system (11) can be written in matrix form as

AuN = b (12)

with symmetric and positive de�nite sti�ness matrix A.

2.4 Prescribed Displacements

To incorporate prescribed values of ui, we transform the matrix A in (12)

by �lling its i-th row and column with 0 and setting the element Aii to 1.

Since each row of A contains contributions of more than one �nite element,
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the transformed matrix ~A will always be invertible. Then we set the initial

vector b to zero, subtract the product uiA
i from it (Ai denotes here the i-th

column of A), and put ui in the i-th position in ~b = b� uiA
i [16].

3 Numerical Examples

In this section, some numerical examples for our two-step registration ap-

proach will be presented. The deformations for all examples were based on

prescribed point displacements, while no external forces have been used.

Figure 1 illustrates the usage of prescribed displacements for a 3D syn-

thetic image which has the size of 12x12x12 voxels. At the top of the �gure,

the prescribed displacements (top/left) and the computed displacement �eld

(top/right) are shown. In the bottom of the �gure, there are three 2D hor-

izontal layers from the displacement �eld above. For this example, layers 3,

4, and 5, starting from the top were chosen. This example illustrates also the

usage of the homogeneous Dirichlet boundary condition (v = 0 on �, where

� is the image boundary).

Figure 2 (left) presents two corresponding boundary structures, where the

image below is a result of some iterations of the snake algorithm applied to

the curve above. In Figure 2 (middle), a synthetic image was deformed using

the prescribed displacements obtained from the snake model. Figure 2 (right)

shows the same deformation applied to a rectangular grid in order to illustrate

topology preserving properties of elastic transformation. The size of images

is 128x128 pixels. As a result of incorporating prescribed displacements as

constraints, the outer boundary of the synthetic image after deformation

(middle/bottom) exactly corresponds to the contour obtained from the snake

algorithm (left/bottom).

Next, we illustrate the application of our two-step registration model to

256x256 MR slices of di�erent patients.

In Figure 3 (left), two MR slices taken from di�erent patients are shown.

The outer contour from the upper image was next superimposed onto the

lower image (middle/top) and then the snake algorithm was applied to the

curve (middle/bottom). The right side of Figure 3 shows the deformation

applied to the original image with prescribed displacements taken from the

result of the snake algorithm.

In Figure 4, the same experiment with another pair of images is presented.

Here, we took the outer skull contour instead of the outer brain contour as

in the experiment above.

From the experiments in this section, one can see that a quite good global

match can be obtained by using only outer contours. Local matching requires
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Figure 3: Two-step medical image registration example. Left column:

Two MR slices taken from di�erent patients. Middle/top: Points from

the outer brain contour of one image superimposed onto the second one.

Midde/bottom: Result of the snake algorithm applied to the curve. Right:

Deformed original image.

more �ne structures (e.g. ventricle systems) to be brought into correspon-

dence.

4 Summary and Further Work

We have presented a two-step parameter-free image registration approach,

where images are elastically deformed with incorporated prescribed displace-

ments. We assume that there exists a unique one-to-one mapping between

two images, and constrain the global deformation by using local values of

this mapping (known displacements of boundary structures). In contrast to

traditional methods, our approach does not depend on parameters of the de-

formation model such as elastic constants and guarantees the exact matching

of boundary structures.

Future research will address the development of a more e�cient model

that can be used instead of the snake model to provide point correspondences

of boundary structures in the brain, since the usability of active contour

models for practical purposes is quite limited because of high complexity of

real medical data.

Another important point is the e�cient numerical implementation of the
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Figure 4: Two-step medical image registration example. Left column:

Two MR slices taken from di�erent patients. Middle/top: Points from

the outer skull contour of one image superimposed onto the second one.

Midde/bottom: Result of the snake algorithm applied to the curve. Right:

Deformed original image.

model. Though the implemented conjugate gradient method with precon-

ditioning [12] requires an acceptable amount of computation time for 2D

images (several minutes on a SPARC 10 workstation), further development

using explicit parallelization is required to make the application to 3D images

practically feasible.
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