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ABSTRACT

We describe a novel approach for elastic matching of

tomographic images of the human brain. The ap-

proach is based on a set of corresponding anatomical

point landmarks and uses approximating thin-plate

splines. Previous work on this topic has concentrated

on using interpolation schemes which means that cor-

responding landmarks are exactly matched to each

other. Consequently, the underlying assumption is

that the landmark positions are known exactly. How-

ever, in real applications the localization of landmarks

is always prone to error. Therefore, to cope with these

errors, we have investigated the application of an ap-

proximation scheme which is based on a minimizing

functional. This approach renders possible to indivi-

dually weight the landmarks according to their loca-

lization uncertainty. Our approach has been applied

to 2D as well as 3D tomographic data.

1. INTRODUCTION

In neurosurgery and radiotherapy planning it is im-

portant to either register images from di�erent modal-

ities, e.g. CT (X-ray Computed Tomography) and

MR (Magnetic Resonance) images, or to match im-

ages to atlas representations. If only rigid transforma-

tions were applied, then the accuracy of the resulting

match often is not satisfactory w.r.t. clinical require-

ments. In general, nonrigid or elastic transformations

are required to cope with the variations between the

data sets.

This contribution is concerned with elastic match-

ing of medical image data based on a set of cor-

responding anatomical point landmarks. Previous

work on this topic has concentrated on i) selecting

the corresponding landmarks manually and on ii) us-

ing an interpolating transformation model (Bookstein

[2], Evans et al. [6], and Mardia and Little [13]). The

basic approach draws upon thin-plate splines and is

computationally e�cient, robust, and general w.r.t.

di�erent types of images and atlases. Also, the ap-

proach is well-suited for user-interaction which is im-

portant in clinical scenaria. However, an interpola-

tion scheme forces the corresponding landmarks to

exactly match each other. The underlying assump-

tion is that the landmark positions are known ex-

actly. In real applications, however, the localization

of landmarks is always prone to error. This is true

for interactive as well as for automatic landmark lo-

calization.

Therefore, to take into account these localization

errors, we have investigated the application of an ap-

proximation scheme where the corresponding thin-

plate splines result from regularization theory. Gen-

erally, such an approach yields a more accurate and

robust registration result. In particular, outliers do

not disturb the registration result as much as is the

case with an interpolation scheme. Also, it is possi-

ble to individually weight the landmarks according to

their localization uncertainty. We have applied this

approach to elastic matching of tomographic images

of the human brain.

We also report on investigations into semi-automa-

tic extraction of anatomical point landmarks using

3D di�erential operators. Algorithms for this task

are important since manual selection of landmarks is

time-consuming and often lacks accuracy.

2. CLINICAL APPLICATIONS FOR ELA-

STIC MATCHING

2.1. Image-atlas matching

One possible application for elastic registration is tra-

jectory planning for neurosurgical intervention. Pain

treatment as well as epilepsy treatment sometimes re-

quire to localize a functionally important region not

visible in the available image data. There are instruc-

tions available in the literature how to construct the

position of such a region given landmarks which can

be identi�ed in CT or MR images. Hence, it is useful

to superimpose an atlas with a medical image as al-

ready proposed by Talairach. Due to the individual

variability of anatomical structures, rigid registration

is generally not su�cient and elastic matching should

be applied.



2.2. CT-MR matching

Another application is the registration of CT and MR

images for the purpose of radiotherapy planning. Ad-

ditionally, a template atlas can be superimposed on

the MR image to indicate, for example, organs at risk.

This superposition result is then overlayed on the CT

image prior to dose calculation and isodose visualiza-

tion on the MR image. It is questionable whether

rigid registration is suitable for this purpose since

MR images are geometrically distorted. On the one

hand, scanner-induced distortions have to be coped

with which are caused by, e.g., inhomogeneities of the

main magnetic �eld, imperfect slice or volume selec-

tion pulses, nonlinearities of the magnetic �eld gra-

dients, and eddy currents [14]. These distortions can

be reduced by suitable calibration steps: The inhomo-

geneities of the main magnetic �eld are minimized by

passive and active shimming whereas, e.g., the gra-

dient nonlinearities cannot be completely shimmed.

Thus, depending on the scanner protocol, the sum

of all remaining distortions leads to a residual error

of a few millimeters (for a spherical �eld of view of

25 cm). On the other hand, there are geometrical

distortions in MR images that are induced by the pa-

tient and cannot be removed by calibration. Param-

eters such as susceptibility variations, chemical shift

of non-water protons and 
ow-induced distortions for

vessels are very important. While the susceptibility

di�erence of tissue and bone is negligible, the suscep-

tibility di�erence between tissue and air is approxi-

mately 10�5. This can result in a �eld variation of up

to 10 ppm and geometrical distortions of more than

5 mm [12],[5] which is most important for the nasal

and aural regions. Consequently, due to the scanner-

as well as the patient-induced distortions of the MR

image, CT and MR images in general cannot be sa-

tisfactorily registered using rigid transformations.

3. THIN-PLATE SPLINE APPROXIMATION

BASED ON A MINIMIZING FUNCTIONAL

The orginal thin-plate spline interpolation approach

introduced by Bookstein [2] (see also [1]) can be ex-

tended in such a way that we can take into account

landmark localization errors. We achieve this by com-

bining a quadratic approximation criterion with the

original smoothness functional:

J�(u) =
1

n

nX

i=1

jqi � u(pi)j
2 + �Jdm(u); (1)

where n is the number of landmarks, d the dimension

of the image, and m the order of derivatives in the

smoothness functional (see Wahba [20] for a theore-

tical study of such functionals). The �rst term (data

term) measures the distances between the transformed

source landmarks pi and the target landmarks qi.

The second term measures the smoothness of the re-

sulting transformation. Hence, the minimization of

(1) yields a transformation u, which i) approximates

the distance of the source landmarks to the target

landmarks and ii) is su�ciently smooth. The rela-

tive weight between the approximation behavior and

the smoothness of the transformation is determined

by the regularization parameter � > 0. In the limit

of � ! 0 we obtain an interpolating transformation,

whereas in the limit of � ! 1 we get a global poly-

nomial of order up to m� 1.

The solution to (1) can be stated analytically as

the weighted sum of polynomials �j and certain radial
basis functions Ui using the coe�cient vectors a and

w. The computational scheme to compute a and w

then reads as

(K+ n�I)w +Pa = v (2)

PTw = 0;

where Kij = Ui(pj), Pij = �j(pi), and v represents

one component of the coordinates of the qi. The in-

teresting fact is that this scheme is nearly the same

as in the case of interpolation. We only have to add

n� in the diagonal of the matrix K.

Fig. 1 shows an example of the thin-plate spline

approximation scheme in 2D (m = 2) for di�erent

values of �. The small black points and big grey

points mark the positions of the source and target

landmarks, respectively. The top-left part of Fig. 1

shows the regular grid. The top-right part shows the

result for � = 0, which is equivalent to the interpo-

lation scheme. At some locations the grid is heavily

distorted, especially around the two close landmarks

in the bottom-left part of this grid. The two bottom

grids visualize results for � = 0:001 (bottom-left) and

� = 0:1 (bottom-right), where the latter one nearly

yields a pure a�ne transformation.

A generalization of the approximation scheme can

be attained, if information about the accuracy of the

landmarks is available. Then, we can weight each

single data term in (1) by the variance �2i . If, for

example, the variance is high, i.e. landmark localiza-

tion is uncertain, then the in
uence on the overall

approximation error is weighted low. With this gen-

eralization our functional reads

J�(u) =
1

n

nX

i=1

jqi � u(pi)j
2

�2i
+ �Jdm(u); (3)

and we have to solve the following system of equa-

tions:

(K+ n�W�1)w +Pa = v (4)

PTw = 0;



Figure 1: Thin-plate spline approximation (input

data, � = 0; 0:001; and 0:1).

whereW = diagf1=�2
1
; : : : ; 1=�2ng (see also [16], [18]).

Note, that this approach can be applied to images of

arbitrary dimension, i.e. in particular to 2D as well

as 3D images.

For a di�erent approach to relax the interpolation

conditions see Bookstein [4]. However, this approach

has been not been related to a minimizing functional,

but merely combines di�erent metrics. Additionally,

this approach is only described for 2D datasets (d =

m = 2) and has only been applied to 2D synthetic

data (`simulated PET images').

4. EXPERIMENTAL RESULTS

4.1. 2D Data

Within the scenario of CT-MR registration as dis-

cussed above we here consider the application of cor-

recting patient-induced susceptibility distortions of

MR images. To this end we have acquired two sagit-

tal MR images of a healthy human volunteer brain

with typical susceptibility distortions. In our experi-

ment we used a high-gradient MR image as \ground

truth" (instead of clinically common CT images) to

avoid exposure of the volunteer to radiation. Both

turbo-spin echo images have consecutively been ac-

quired on a modi�ed Philips 1:5T MR scanner with a

slice thickness of 4mm without repositioning. There-

fore, we are sure that we actually have identical slicing

in space. Using a gradient of 1mT=m and 6mT=m for
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Figure 2: Original MR images with landmarks: First

(top) and second (bottom) image.

the �rst and second image then leads to a shift of ca.

7:5:::10mm and ca. 1:3:::1:7mm, respectively.

Within each of the two images we have manually

selected 20 point landmarks. To simulate outliers, one

of the landmarks in the second image (No. 3) has been

shifted about 15 pixels away from its true position

for demonstration purposes (see Fig. 2). Note, how-

ever, that manual localization of landmarks actually

can be prone to relatively large errors. Fig. 3 shows

the results of the interpolating vs. the approximating

thin-plate spline approach. Each result represents the

transformed �rst image. It can be seen that the in-

terpolation scheme yields a rather unrealistic defor-

mation since it forces all landmark pairs, including

the pair with the simulated outlier, to exactly match

each other. Using our approximation scheme instead

yields a more accurate registration result.

4.2. 3D Data

We have applied our registration scheme also to 3D

data. In our experiment, we have simulated nonlinear



Figure 3: Registration results: Interpolation (top)

and approximation (bottom).

deformations of the digital SAMMIE atlas [10]. One

slice of this 3D human brain atlas is shown in Fig. 4 on

the left. Di�erent anatomical structures are labeled

with di�erent gray values. The deformed atlas with

overlayed contours from the original atlas is shown on

the right. It can be seen that the deformations are

relatively large.

To register the deformed atlas with the original at-

las, we have manually speci�ed 34 homologous land-

marks and have added Gaussian noise to the land-

mark positions such as to simulate typical localiza-

tion errors (see also [17]). A di�erent noise level has

been chosen for each landmark, with standard devi-

ations �i in the range between 0:5 and 3:5 voxels.

For our experiment this resulted in displacements be-

tween 0:5 and 7 voxels which are to be expected for

manual landmark localization.

Fig. 5 on the left shows the result of applying

the approximating thin-plate spline approach with

� = 0:5 to the 3D atlas data. For the weights in (3)

we have used values in accordance to the simulated

Figure 4: Original and deformed 3D human brain

atlas.

Figure 5: Thin-plate spline approximation with indi-

vidually weighted landmarks: � = 0:5 (left), � = 1

(a�ne approximation) (right).

noise levels. We have also computed the registration

result for a pure a�ne transformation (limiting case

of � = 1 of approximating thin-plate splines; see

Fig. 5 on the right) while using the same weights as

before. As can be seen, the registration result with

approximating thin-plate splines is signi�cantly bet-

ter in comparison to a pure a�ne transformation, par-

ticularly in the lower part of the image.

5. SEMI-AUTOMATIC LOCALIZATION OF

ANATOMICAL POINT LANDMARKS

One main problem with point landmarks is their reli-

able and accurate extraction from 3D images. There-

fore, 3D point landmarks have usually been selected

manually (e.g., Evans et al. [6], Hill et al. [9]; but see

also Thirion [19]). In the following, we describe our

investigations into semi-automatic localization of 3D

anatomical point landmarks. Semi-automatic means

that either a region-of-interest (ROI) or an approxi-

mate position of a speci�c landmark (or both) is given

by the user. Then, an algorithm has to provide a re-

�ned position of the landmark. Alternatively, land-



mark candidates for a large ROI or even for the whole

data set may be provided automatically from which

the �nal set of landmarks is selected manually. Such

a semi-automatic approach has the advantage that a

user has the possibility to control the results (\keep-

the-user-in-the-loop").

Within a ROI we apply speci�c 3D di�erential

operators such as to exploit the knowledge about a

landmark as far as possible, in particular it's geomet-

ric structure. To localize curvature extrema we use an

operator which estimates Gaussian curvature, i.e. the

product of the two principal curvatures K = �1�2,
multiplied with the fourth power of the gradient mag-

nitude jrgj. Fig. 6 shows a result of this operator for
the right frontal horn in a 3D MR image in sagit-

tal, axial, and coronal view. It can be seen that we

obtain a strong operator response at the tip of the

frontal horn.

We also investigate 3D di�erential operators which

are extensions of existing 2D `corner detectors'. For

an analytic study of such 2D operators see Rohr [15].

These operators have the advantage that only low or-

der partial derivatives of the image function are nec-

essary (either �rst or �rst and second order). There-

fore, these operators are computationally e�cient.

Recently, we have compared the 2D operators w.r.t.

their detection capabilities on a larger number of 2D

tomographic images of the human brain (see Hartkens

et al. [8]). In Fig. 7 we show, as an example, the

application of the 2D operator of F�orstner [7] vs. a

3D extension of it: detCg=traceCg ! max, where

Cg = rg (rg)T and rg denotes the image gradient

in 2D and 3D, respectively. Note, that in the 2D case

many well detected landmarks agree with the manu-

ally selected landmarks in Bookstein [3]. Note also,

that the 3D operator actually takes into account the

3D structure of the landmarks and therefore in a sin-

gle slice of a 3D image only a few of the 3D point

landmarks are visible, i.e., other landmarks accord-

ing to [3] have been detected in di�erent slices.
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Figure 6: Right frontal horn in a 3D MR data set

(left) and result of computing the 3D Gaussian cur-

vature (right) in sagittal, axial, and coronal view
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