
ALCRA { ALC with Role Axioms

Michael Wessel, Volker Haarslev, and Ralf M�oller

University of Hamburg, Computer Science Department,

Vogt-K�olln-Str. 30, 22527 Hamburg, Germany

Email: fmwessel,haarslev,moellerg.informatik.uni-hamburg.de

Abstract

This paper presents a tableaux calculus for deciding the concept satis-

�ability problem of the new description logic ALCRA and discusses some

open problems. ALCRA augments the description logic ALC with role

inclusion axioms of the form S ÆT v R1t : : :tRn. Additionally, all roles

are interpreted as disjoint.

1 Introduction and Motivation

In the following we present the new description logic ALCRA and a tableaux

calculus for deciding the ALCRA concept satis�ability problem. The paper

presents work in progress. ALCRA augments the description logic ALC with

role inclusion axioms of the form S Æ T v R1 t : : : t Rn, n � 1, enforcing

SI Æ T I � RI
1 [: : : [RI

n
on the interpretations I. A �nite set of these role

axioms is called a role box, R. Additionally, all roles have to be interpreted as

disjoint. As a �rst example, consider the ALCRA concept (9R:9S:C) u 8T::C
w.r.t. the role axiom R Æ S v T . This concept is unsatis�able in ALCRA, but
satis�able inALC. ALCRA is at least as expressive as ALCR+, since a role R can

be declared as transitively closed with the role axiom R Æ R v R. As another

example taken from the realm of genealogy, let us consider the concept term

(9brother:9sister:9sister:9daughter:9sister:css) u 8niece::css w.r.t. the role

box fbrother Æ sister v sister; sister Æ daughter v niece; daughter Æ sister v
daughter; sister Æ sister v sisterg. A careful inspection will reveal that this

concept is inconsistent since the computer science student (css) plays also the

role of a niece and is therefore a �ller of the niece role. Note that composition

of roles is not allowed to appear on the right hand side of role axioms. One can

therefore not write axioms like niece v (brotherÆdaughter)t(sisterÆdaughter).
It is easy to show that allowing composition on the right hand side of the role

axioms yields a form of undecidable role-value maps (see [2]).

We believe that in many application domains disjoint roles are an indispens-

able tool required for an adequate modeling. Reconsidering our genealogical

example, no individual can play the role of a nephew and a niece. If the role

box given above would additionally contain the axiom niece Æ sister v nephew,

the concept 9sister:9daughter:9sister:> would become inconsistent w.r.t. this

role box.

2 Syntax and Semantics

The set of concept terms (concepts for short) is the same as for the language

ALC. Let NC be the set of concept names, and NR be the set of role names

(roles for short), with NC \NR = ;. Now, every C 2 NC is a concept term.

Additionally, if C, C1, C2 are concept terms, and R 2 NR n fR?g, then also

C1 u C2, C1 t C2, 9R:C, 8R:C are concept terms. Note that the special role

R? 2 NR cannot be used within the concept terms. R? is the so-called don't

care role. Its purpose will be explained later.1 ? (>) is an abbreviation for

C u :C (C t :C), for some C. The function roles(C) returns the set of role

names used in C (e.g. roles(9R:9S:C u 9T:D) = fR; S; Tg), and sub(C) returns

the subconcepts of C (e.g. sub(C u 8R:D) = fC u 8R:D;C; 8R:D;Dg). The

syntax of role axioms is as follows:

De�nition 1 (Role Axioms, Role Box) If S; T; R1; : : : ; Rn 2 NR, then the

expression S Æ T v R1 t : : :tRn, n � 1, is called a role axiom. If ra = S Æ T v
R1 t : : : t Rn, then pre(ra) =def (S; T) and con(ra) =def fR1; : : : ; Rng. A �nite

set R of role axioms is called a role box.

Let roles(ra) =def fS; T; R1; : : : ; Rng, and roles(R) =def

S
ra2R roles(ra).

If C is an ALCRA concept and R is a role box, we also use the function

roles(C;R) =def roles(C) [roles(R).

The role box R is said to be admissible i� R? =2 roles(R), and 8ra1; ra2 2 R :

pre(ra1) = pre(ra2)) ra1 = ra2. We can then use the function ra(S; T) = ra

to refer to this unique role axiom (if R is clear from the context) and de�ne

con(S; T) =def con(ra(S; T)). In the following, we will only consider admissible

role boxes. Additionally, the completion w.r.t. the concept term C of the role

box R is the role box R(C) =def R [fRÆS v tT2(fR?g[roles(C;R))T j
:(9ra 2 R : pre(ra) = (R; S)); R; S 2 (fR?g [roles(C;R)) g:

This role box is also called the completed role box of R w.r.t. C.

De�nition 2 (Interpretation) An interpretation I =def (�I; �I) consists of
a non-empty set �I , called the domain of I, and an interpretation function �I

that maps every concept name to a subset of �I , and every role name to a

subset of �I ��I . Additionally, for all roles R; S 2 NR, R 6= S: RI \ SI = ;.
The following functions on I will be used: The universal relation of I is de�ned

1More speci�cally, R? is needed for the de�nition of the completed role box. A complete

role box is needed for the presented tableaux algorithm in order to be sound and complete.

as UR(I) =def

S
R2NR

RI , and the universal relation w.r.t. a set of role names

R as UR(I;R) =def

S
R2RRI. The skeleton of I is de�ned as SKEL(I) =def

UR(I) n (UR(I)+ Æ UR(I)+), and the skeleton w.r.t. a set of role names R as

SKEL(I;R) =def UR(I;R)n(UR(I;R)+ Æ UR(I;R)+). If <i; j> 2 SKEL(I),
the edge is called a direct edge, otherwise an indirect edge. If <i; j> 2 UR(I),
the edge is called an incoming edge for j. The interpretation function �I can be

extended to arbitrary concepts C: (:C)I =def �
I nCI , (C uD)I =def C

I \DI ,

(C t D)I =def CI [DI, (9R:C)I =def f i 2 �I j 9j 2 CI : <i; j> 2 RI g;
(8R:C)I =def f i 2 �I j 8j : <i; j> 2 RI) j 2 CI g: An interpretation I sat-

is�es resp. is a model of a concept term C, I j= C, i� CI 6= ;. An inter-

pretation I satis�es resp. is a model of a role axiom S Æ T v R1 t : : : t Rn,

I j= S Æ T v R1 t : : : tRn, i� SI Æ T I � RI
1 [: : : [RI

n
. An interpretation I is

a model of a role box R, I j= R, i� for all role axioms ra 2 R : I j= ra. An

interpretation I is a model of (C;R), I j= (C;R), i� it is a model of C and a

model of R: I j= C, I j= R. Let us collect some facts:

Proposition 1 If I j= (C;R), then for every interpretation I 0 = (�I; �I
0

) with

DI0 = DI for all concept names D 2 sub(C) \ NC and RI0 = RI for all role

names R 2 roles(C;R): I 0 j= (C;R).

Proposition 2 (C;R) is satis�able i� (NNF(C);R) is satis�able.2

Proposition 3 (C;R) is satis�able i� (C;R(C)) is satis�able.

In the proof (see [3]), a model I = (�I ; �I) of (C;R) is augmented to become a

model I 0 = (�I0; �I
0

) of (C;R(C)) (the other direction is obvious). Let �I0 =def

�I , and �I
0

(D) =def D
I for all concept names D 2 NC, and �

I0(R) =def R
I for

all role names R 2 roles(C;R), and �I
0

(R) =def ; for all role names R 2 ((NR n
fR?g) n roles(C;R)), and �

I0(R?) =def UR(I; roles(C;R))+ n UR(I; roles(C;R)).
In other words: the don't care relationship is established between two domain

objects if there is no edge connecting them. It is then shown that all \old"

role axioms are still satis�ed (those in R), and all \new" role axioms (those in

R(C) n R) are also satis�ed. Also note that I 0 is a connected model. In fact,

every individual is connected to all its ancestors via exactly one role.

Proposition 4 ALCRA does not have the �nite model property, i.e. there are

pairs (C;R) that have no �nite models.

Proof 1 Consider (9R:9R:>) u (8S:9R:>) w.r.t. fR Æ R v S;R Æ S v S; S Æ
R v S; S Æ S v Sg. Assume there is a �nite model I with n = j�I j. Let

2
NNF(C) returns the Negation Normal Form of C. The NNF can be obtained by \pushing

the negation sign inwards", e.g. by exhaustively applying the rules :(C1 uC2)! :C1 t:C2,

:(C1 t C2)! :C1 u :C2, :8R:C1 ! 9R::C1 and :9R:C1 ! 8R::C1.

i0 2 ((9R:9R:>) u (8S:9R:>))I . Due to i0 2 (9R:9R:>)I there must be some

i1, i2 with <i0; i1> 2 RI, <i1; i2> 2 RI , <i0; i2> 2 SI due to R Æ R v S.

Since i0 2 (8S:9R:>)I we have i2 2 (9R:>)I , and there must be some i3 with

<i2; i3> 2 RI, <i0; i3> 2 SI due to S Æ R v S, and <i1; i3> 2 SI due to

R Æ R v S. Since i0 2 (8S:9R:>)I we have i3 2 (9R:>)I , etc., until we

reach in�1 with <i0; in�1> 2 SI, <in�2; in�1> 2 RI , in�1 2 (9R:>)I . Due to

n = j�I j, we have to \reuse" one of the individuals in �I when \creating" the

R-successor of in�1: <in�1; ij> 2 RI for some j 2 0 : : : n� 1. If j = n� 1, then

<in�1; in�1> 2 RI, and due to R ÆR v S: <in�1; in�1> 2 SI . If j = n� 2, then

<in�1; in�2> 2 RI, <in�2; in�1> 2 RI , <in�1; in�1> 2 SI (RÆR v S), and �nally

<in�2; in�1> 2 SI (RÆS v S). If j < n�2, then <in�1; ij> 2 RI, <ij; in�1> 2 SI ,

<ij; ij> 2 SI (S ÆR v S): now, either j 6= 0, then <ij�1; ij> 2 RI , <ij; ij> 2 SI ,

<ij�1; ij> 2 SI (R ÆS v S), or j = 0, <i0; i0> 2 SI, <i0; i1> 2 RI , <i0; i1> 2 SI

(S ÆR v S). In all cases, we have RI \ SI 6= ;. Since the argumentation applies

independently of n, there can be no �nite models. 2

3 A Tableaux Algorithm

In a similar way as for other description logics, a non-deterministic tableaux al-

gorithm is given that constructs a so-called �nite completion tree. Soundness of

the algorithm is proven by showing that a so-called tableau can be constructed

from a complete and clash-free completion tree that has been generated by the

algorithm. Completeness is proven by showing how to construct a clash-free

completion tree from a given tableau. Basically, a tableau is a possibly in�nite

tree whose edges are labeled with role names, and whose nodes are labeled with

constraints enforced on these nodes (see [1, 3]). A tableau for (NNF(C);R(C))

is just an other representation of a special model I of (NNF(C);R(C)). We call

these models \tree skeleton models". Let I be the (tree skeleton) model corre-

sponding to some given tableau. Then, SKEL(I) corresponds to the labeled tree
of this tableau, e.g. if a node y in the tableau is an R-successor of the node x,

<x; y> 2 ER, due to some constraint 9R : : : enforced on node x, 9R : : : 2 LN (x),
then w.r.t. I we have <x; y> 2 RI \ SKEL(I). However, the indirect edges

which might be present in I due to role axioms cannot be represented in the

tableau in this way, since a tableau is a labeled tree. For example, if RÆS v T ,

then a model I with <x0; x1> 2 RI , <x1; x2> 2 SI must satisfy <x0; x2> 2 T I .

Therefore, every incoming edge for a node x in the model is represented in the

tableau by a special annotated all constraint of the form (8U:D)S;w 2 LN (x),
where S represents the type of the incoming edge, and w is a word of role names

denoting a path in the tree leading from the individual from which the edge

originates to x. In our example we would have (8 : : :)T;RS 2 LN (x2) due to

<x0; x2> 2 T I, <x0; x1> 2 ER, <x1; x2> 2 ES, and (8 : : :)S;S 2 LN (x2) due to

<x1; x2> 2 SI , <x1; x2> 2 ES. Assume that 8U:D 2 LN (x0). Then, the presence

of the constraint (8U:D)T;RS 2 LN (x2) is ensured (see below). Since x2 is an

indirect T -successor of x0 and not a U -successor, D =2 LN (x2). If we additionally
had 8T:D 2 LN (x0), then also (8T:D)T;RS 2 LN (x2), and D 2 LN (x2). When-

ever a constraint (8U:D)T;w 2 LN (x) with U = T is encountered, D 2 LN (x) is
ensured.

De�nition 3 (Tableau) If C is anALCRA concept in NNF andR is a role box,

a tableau T for (C;R(C)) is a tuple (N ;LN ; E ;LE), where N is a set of nodes,

E � N �N is a set of edges, and the total labeling function LE : E ! roles(R)

associates edges with role names. For a role R 2 NR, the set of R-edges is

ER =def f<x; y> j (<x; y>;R) 2 LE g: The graph (N ; E) has the structure of a
possibly in�nite tree. Additionally, LN is a node labeling function: LN : N !
sub(C) [Q, where Q = f (8R:C1)S;w j 8R:C1 2 sub(C); or 8R:C1 = 8R?:>;

R; S 2 roles(R(C)); w 2 roles(R)+ g:
If <x; y> 2 E , y is called a successor of x. If <x; y> 2 E+, x is called an

ancestor of y, and y is called a descendant of x. Let w ancestor(y; w) =def x

i� w = R1R2 : : : Rn, where w 2 roles(R)+, <x; x1> 2 ER1, <x1; x2> 2 ER2, . . . ,
<xn�1; y> 2 ERn. Additionally, the following conditions hold:

1. There is some node x0 2 N with C 2 LN (x0).

2. For all x; y 2 N , and for all C1; C2; C3 2 sub(C) and for all (8Ri:Ci)Si;w
2

Q and R;Ri; S; Si 2 roles(R(C)), w;wi 2 roles(R)+, we have

(a) if C1 2 LN (x), then :C1 =2 LN (x),

(b) if C1 u C2 2 LN (x), then C1 2 LN (x) and C2 2 LN (x),

(c) if C1 t C2 2 LN (x), then C1 2 LN (x) or C2 2 LN (x),

(d) if 9R:C1 2 LN (x), then there is some y such that <x; y> 2 ER and

C1 2 LN (y),

(e) if (8R:C1)R;w 2 LN (x), then C1 2 LN (x),

(f) 8R?:> 2 LN (x),

(g) (8R:C1)S;w 2 LN (y) i� there is some x with x = w ancestor(y; w)

and 8R:C1 2 LN (x),

(h) if (8R:C1)S;w 2 LN (x) and jwj = 1, then w = S,

(i) if (8R1:C1)S1;w 2 LN (x) and (8R2:C2)S2;w 2 LN (x), then S1 = S2,

(j) if (8R1:C1)S1;w1 2 LN (x), (8R2:C2)S2;w2 2 LN (y), (8R3:C3)S3;w1w2 2
LN (y) and x = w ancestor(y; w2), then S3 2 con(S1; S2).

Lemma 1 (C;R) is satis�able i� there exists a tableau T for (NNF(C);R(C)).

Proof 2 Due to Proposition 2, (C;R) is satis�able i� (NNF(C);R) is satis�-

able. Due to Proposition 3, (NNF(C);R) is satis�able i� (NNF(C);R(C)) is

satis�able. Let C 0 = NNF(C).

\(": If T = (N ;LN ; E ;LE) is a tableau for (C 0;R(C 0)), a model I =

(�I ; �I) of (C 0;R(C 0)) can be constructed as follows: �I =def N , CI
1 =def

f x j C1 2 LN (x) g for all C1 2 NC \ sub(C 0), CI
1 =def ; for all other concept

names C1 2 NC n sub(C
0), and

RI =def f<x; y> j w ancestor(y; w) = x; (8S:C1)R;w 2 LN (y) g for all role names

R 2 roles(R(C)), and RI =def ; for all other roles R 2 NR n roles(R(C)). First
of all, due to Proposition 1 we can safely interpret all unmentioned roles (those

not in roles(R(C 0))) and concept names (those not in sub(C 0)) with the empty

set. We show that all roles are interpreted as disjoint: assume the contrary.

Then there must be some roles R; S 2 NR, R 6= S: RI \ SI 6= ;. Due to the

de�nition of �I , <x; y> 2 RI \SI i� x = w ancestor(y; w), (8S1:C1)R;w 2 LN (y)
and (8S2:C2)S;w 2 LN (y). However, this violates Property 2i, and therefore, T
cannot be a tableau (contradiction). We show I j= R(C 0): assume the contrary.

Then there must be some role axiom ra 2 R(C 0) that ist not satis�ed by I. This
is the case i� there are some x; y; z with <x; y> 2 RI, <y; z> 2 SI, and either

<x; z> =2 UR(I), or <x; z> 2 T I , but T =2 con(R; S). Due to the de�nition of

�I, <x; y> 2 RI, <y; z> 2 SI, i� x = w ancestor(y; w1), y = w ancestor(z; w2),

(8S1:C1)R;w1 2 LN (y) and (8S2:C2)S;w2 2 LN (z). In the �rst case, <x; z> =2
UR(I), i� (8S3:C3)T;w1w2 =2 LN (z), for all T 2 NR. However, due to property 2f,

we have 8R?:> 2 LN (x). Since x = w ancestor(z; w) and 8R?:> 2 LN (x), due to
property 2g we have (8R?:>)T;w 2 LN (z), for some T 2 roles(R(C 0)) (contradic-

tion). In the second case, <x; z> 2 T I i� (8S3:C3)T;w1w2 2 LN (z). Summing up

we have y = w ancestor(z; w2), (8S1:C1)R;w1 2 LN (y) and (8S2:C2)S;w2 2 LN (z).
(8S3:C3)T;w1w2 2 LN (z). Due to tableau Condition 2j, T 2 con(R; S) (con-

tradiction). We can also show by structural induction on the concept E that

if E 2 LN (x), then also x 2 EI (see [3] for details). Assuming this, from

C 0 2 LN (x0) (due to Property 1 in De�nition 3) it follows that x0 2 C 0I . Since

C 0I 6= ;, we have I j= C 0. Summing up, we have shown that I j= (C 0;R(C 0)).

\)": If I j= (C 0;R(C 0)), I = (�I ; �I), then a tableau T = (N ;LN ; E ;LE)
for (C 0;R(C 0)) can be constructed. Since a tableau is required to be a (possibly

in�nite) tree, but a model may contain \joins" and cycles and is therefore an

arbitrary graph, but not necessarily a tree, we cannot simply assign N =def �
I .

Intuitively, the tableau is constructed by traversing the model, collecting the

required information. Therefore, each node x 2 N in the tableau T corresponds

to a path in I. A path in I is inductively de�ned as follows:

� for some (but only one) i0 2 �I with i0 2 C 0I , [i0] is a path in I

� if [i0; : : : ; im] is a path in I and im 2 (9R:C1)
I, <im; in> 2 RI with in 2 CI

1

for some 9R:C1 2 sub(C 0), then [i0; : : : ; im; in] is also a path in I.

Let P(I) denote the set of paths (as de�ned above) in I. We can now de�ne
T = (N ;LN ; E ;LE) as follows

� N =def P(I),

� E =def f<p; q> j p; q 2 N ;

p = [i0; : : : ; in]; q = [i0; : : : ; in; in+1]; (possibly n = 0),

<in; in+1> 2 UR(I; roles(R(C 0))) g;

� LE =def f (<p; q>;R) j <p; q> 2 E ;

p = [i0; : : : ; in]; q = [i0; : : : ; in; in+1]; (possibly n = 0),

<in; in+1> 2 RI g;

� For all q 2 N , q = [i0; : : : ; in]:

LN (q) =def fC1 j C1 2 sub(C 0); in 2 CI
1 g [f8R?:>g [

f (8R:C1)S;w j p = w ancestor(q; w);

p = [i0; : : : ; im]; q = [i0; : : : ; im; : : : ; in];

<im; in> 2 SI ;8R:C1 2 LN (p) g:

We have to prove that T is a tableau for (C 0;R(C 0)) by showing that the tableau

conditions are satis�ed. First of all, (N ; E) is indeed a (possibly in�nite) tree

which should be obvious by the de�nitions of N and E . Then, it can be shown

that the construction satis�es the tableau properties 1 to 2j (see [3] for details).

Summing up we have shown that T is a tableau for (C 0;R(C 0)). 2

De�nition 4 (Completion Tree) A completion tree CT for (C;R(C)) is a

tuple (N ;LN ; E ;LE). N , E , LN and LE are de�ned as in De�nition 3, but

without the additional conditions 1 and 2a { 2j. Unlike in De�nition 3, (N ; E)
is always a �nite tree. The same notions of successor, w ancestor etc. as in

De�nition 3 are used. A completion tree is said to contain a clash i� there is

some node x with fC;:Cg � LN (x) for some C 2 NC (primitive clash), or there

are constraints (8R1:C1)S;w1 2 LN (x), (8R2:C2)T;w2 2 LN (y), (8R3:C3)U;w1w2 2
LN (y) with x = w ancestor(y; w2) and U =2 con(S; T) (role box clash). Two

nodes x, y in a completion tree are said to be equivalent, x � y i� 8c1 : (c1 2
LN (x)) 9c2 2 LN (y) : c1 �c c2)^8c1 : (c1 2 LN (y)) 9c2 2 LN (x) : c1 �c c2),

where c1 �c c2 i� c1 = (8R:C)S;w ^ c2 = (8R:C)S;v _ c1 = c2.

The tableaux algorithm works as follows: in order to decide the satis�ability of

(C;R(C)), the algorithm starts with the initial completion tree

CT 0 = (fx0g; f(x0; fNNF(C) u 8R?:>g)g; ;; ;)
and exhaustively applies the non-deterministic tableaux expansion rules (see Fig-

ure 1) until either the completion tree contains a clash (see above), or none of

the rules can be applied any longer, i.e. the tree is complete. If the completion

rules can be applied in such a way that they construct a complete and clash-free

completion tree, then (C;R(C)) is satis�able. Then, (C;R(C)) is unsatis�able

i� all possible computations yield a completion tree containing a clash.

u-rule:

if 1. C1 u C2 2 LN (xi)

2. fC1; C2g 6� LN (xi)

then LN (xi) := LN (xi) [

fC1; C2g

t-rule:

if 1. C1 t C2 2 LN (xi)

2. fC1; C2g \ LN (xi) = ;
then

LN (xi) := LN (xi) [fCg

for some C 2 fC1; C2g

8-rule:

if 1. (8R:D)R;w 2 LN (xi)

2. D =2 LN (xi)
then

LN (xi) := LN (xi) [fDg

98-rule:

if 1. 9R:C1 2 LN (xi)

2. neither the u- nor the t- nor the

8-rule is applicable to xi
3. :9<xi; xj> 2 ER : C1 2 LN (xj)

4. xi is not blocked

(see below for a discussion)

then create a new node xj with

LE(<xi; xj>) := R, LN (xj) := L,

where W = f (w;S) j

(8T:D)S;w 2 LN (xi) g;

and L is some set that can

non-deterministically be constructed by:

for all (w;S) 2 W:

choose some U 2 con(S;R):

C(w) = f (8T:D)U;wR j

(8T:D)S;w 2 LN (xi) g

L = fC1g [f8R?:>g [S
(w;S)2W C(w) [

f (8T:D)R;R j 8T:D 2 LN (xi) g

Figure 1: The tableaux expansion rules

A blocking mechanism is needed to ensure termination of the tableaux algo-

rithm, e.g. for ((9R:C) u (8R:9R:C); fR ÆR v Rg). Note that this concept

is also expressible in ALCR+, since R is declared as a transitively closed role.

Unlike for ALCR+, an in�nite model (tableau) must be constructed if blocking

occurred. Unfortunately, the blocking condition forALCRA is not yet thoroughly

worked out, so we will discuss some open problems in the following. However,

we strongly believe that an appropriate blocking condition can be found and

that the language is therefore indeed decidable, even if no formal proof is yet

available. Surprisingly, unlike for ALCR+, equal blocking is not correct. Consid-

ering equal blocking, a node y is said to be blocked by an ancestor node x of y,

i� LN (x) � LN (y). Note that (8R:C)S;w1 �c (8R:C)S;w2, even if w1 6= w2. In

order to exemplify the incorrectness of equal blocking, let us consider

(9R:> u 8R:9R:> u 8S:9R:>; fR ÆR v S; S ÆR v S; S Æ S v Tg):
The example is unsatis�able, since a role box clash is encountered if a chain

of at least four R successors (<x0; x1> 2 ER, <x1; x2> 2 ER, <x2; x3> 2 ER,
<x3; x4> 2 ER) has been created:

LN (x0) = f9R:> u 8R:9R:>u 8S:9R:>u 8R?:>;9R:>;8R:9R:>;8S:9R:>;8R?:>g,

LN (x1) = f>;9R:>; (8R:9R:>)R;R; (8S:9R:>)R;R;8R?:>; (8R?:>)R;Rg,

LN (x2) = f>;9R:>; (8R:9R:>)S;R2 ; (8S:9R:>)S;R2 ;8R?:>; (8R?:>)R;R; (8R?:>)S;R2g,

LN (x3) = f>;9R:>; (8R:9R:>)S;R3 ; (8S:9R:>)S;R3 ;8R?:>; (8R?:>)R;R; (8R?:>)S;R2 ;

(8R?:>)S;R3g, LN (x4) = f>;9R:>; (8R:9R:>)S;R4 ; (8S:9R:>)S;R4 ;8R?:>; (8R?:>)R;R;

(8R?:>)S;R2 ; (8R?:>)S;R3 ; (8R?:>)S;R4g. The completion tree contains a role box

clash due to (8R?:>)S;R4 2 LN (x4), (8R?:>)S;R2 2 LN (x4), (8R?:>)S;R2 2
LN (x2), with x2 = w ancestor(x4; RR) and S =2 con(S; S). Considering equal

blocking, node x3 would have already been blocked by x2 since LN (x3) �
LN (x2), and the wrong answer \satis�able" would be returned by the algorithm.

A promising candidate for a blocking condition is the predicate LN (x) �c

LN (y) ^ COMP(x) = COMP(y), where COMP(z) is the set of compositions

for the node z: COMP(z) =def f(S; T; U) j 9w1; w2; x
0 : w ancestor(z; w2) = z0;

(8S1:C1)S;w1 2 LN (z
0); (8S2:C2)T;w2 2 LN (z); (8S3:C3)U;w1w2 2 LN (z)g: Recon-

sidering our example, w.r.t. this new blocking condition x3 is not blocked by x2,

since COMP(x2) 6= COMP(x3): COMP(x2) = f(R;R; S)g, COMP(x3) =

f(R;R; S); (S;R; S)g. Therefore, x4 would have been created, and the unsatis-

�ability due to the role box clash would be detected. Intuitively, COMP(x) =
COMP(y) ensures that no new composition possibilities have been produced

that might lead to role box clashes when extending the tableau.

Let us discuss why a complete role box is needed. Let us consider (8V:C) u
(9R:9S:9T::C) w.r.t. fS Æ T v U;R Æ U v V g, which is unsatis�able. Assume

the algorithm would be run without a completed role box, and let <x0; x1> 2 ER,
<x1; x2> 2 ES, <x2; x3> 2 ET . Then, 8V:C 2 LN (x0), (8V:C)R;R 2 LN (x1), but
(8V:C)X;RS =2 LN (x2) for all rolesX, since there is no role axiom with pre(pra) =

(R; S). Therefore, the quali�cation 8V:C was \forgotten" and no clash would

be detected. However, the completed role box contains R Æ S v R? t R t S t
T t U t V . Therefore, (8V:C)X;RS 2 LN (x2) for some X 2 fR?; R; S; T; U; V g.
The constraint will be propagated to x3 as (8V:C)Y;RST 2 LN (x3) for some Y 2
con(X; T). Since the role box is complete, Y 2 con(X; T) can indeed be choosen,

independently of X. Now, due to 8R?:> 2 LN (x1) and S Æ T v U , we also

have (8R?:>)S;S 2 LN (x2), (8R?:>)U;ST 2 LN (x3). Since (8V:C)R;R 2 LN (x1),
(8R?:>)U;ST 2 LN (x3) and con(R;U) = V , a role box clash can only be avoided

i� (8V:C)Y;RST = (8V:C)V;RST , i.e. Y = V . In fact, Y = V must have been

chosen in order to avoid the role box clash, so (8V:C)V;RST 2 LN (x3). However,
this produces a primitive clash, as desired, due to f:C;Cg � LN (x3). Whatever

is tried (guessed) for X and Y , either a role box clash or a primitive clash is

detected, proving the unsatis�ability of the example. Note that the completed

role box as well as the (appropriately rewritten) 8R?:> constraints play a key

role in this argumentation. Unfortunately, it is not straightforward to extend

the calculus to be able to deal with non-disjoint roles. In fact, the disjointness

requirement is crucial for the approach. Let us consider (8B:C) u (8V:?) u
9R:((8U 0:?)u9S:9T::C) w.r.t. the role box fRÆS v U tV; S ÆT v U 0tV 0; RÆ
U 0 v A;R Æ V 0 v B;U Æ T v A; V Æ T v Bg. Then, the following computation

is possible: (8V:?)U;RS 2 LN (x2), (8B:C)U;RS 2 LN (x2) (due to R Æ S v U t V

and 8V:? 2 LN (x0)), (8V:?)A;RST 2 LN (x3), (8B:C)A;RST 2 LN (x3) (due to

U Æ T v A). Since 9T::C 2 LN (x2), :C 2 LN (x3). Additionally, C =2 LN (x3),

since the quali�cation (8B:C)A;RST 2 LN (x3) is not applicable, because B 6= A.

Due to 8U 0:? 2 LN (x1) and SÆT v U 0tV 0, we also have (8U 0:?)V 0;ST 2 LN (x3).
Now, due toRÆV 0 v B the quali�cationC from 8B:C 2 LN (x0) should be added
to LN (x3), since x3 is an indirect A-successor and an indirect B-successor of x0.

With the disjointness requirement, we would get a role box clash, since A 2
con(U; T) has been choosen, but A =2 con(R; V 0). But without the disjointness

requirement, no clash is detected because (8B:C)B;RST =2 LN (x3). This is due

to the fact that the calculus creates only \left reductions" when propagating the

annotated all constraints to the next successor node ((R Æ S) Æ T is called left

reduction, R Æ (S Æ T) right reduction). The disjointness requirement enforces

that the choosen left reduction is in fact the only valid reduction possibility.

As the example shows, without the disjointness requirement, other reduction

possibilities could enforce non-empty role intersections without being noticed,

since there is no \syntactic indicator" for them (as for B in the example).

4 Conclusion and Future Work

It has been argued that the satis�ability problem of the language ALCRA is

decidable. It should be noticed that the so-called trace technique can be ap-

plied for ALCRA, but we were not able to establish a polynomial bound on the

length of the traces. It is believed that the satis�ability problem of ALCRA is

not in PSPACE. We are currently working on a calculus for a language called

ALCHRA	. This language does not require that all roles have to be interpreted

as disjoint, and also role inclusion axioms (R v S) are allowed. Therefore,

ALCHRA	 is a full super-language of ALCHR+. Since the presented tableaux-

based approach cannot be extended to cover non-disjoint roles correctly, we are

trying to represent the direct as well as the indirect edges explicitly via role mem-

bership constraints (constraints of the form (x; y) : R). Blocking seems to be

even more complicated with this approach. However, ALCHRA	 has the �nite

model property, unlike ALCRA. Finally, we would like to thank the anonymous

reviewers and Anni-Yasmin Turhan for valuable comments.

References

[1] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expres-

sive description logics. In Proceedings of the 6th International Conference on Logic

for Programming and Automated Reasoning (LPAR'99).

[2] Manfred Schmidt-Schau�. Subsumption in KL-ONE is Undecidable. In Principle

of Knowledge Representation and Reasoning { Proceedings of the First Interna-

tional Conference KR '89.

[3] M. Wessel, V. Haarslev, and R. M�oller. ALCRA { ALC with Role Axioms. Forth-

coming. Technical report.

