Global Image Properties

Global image properties refer to an image as a whole rather than
components. Computation of global image properties is often required
for image enhancement, preceding image analysis.

We treat
 empirical mean and variance
* histograms
e projections
* Cross-sections

« frequency spectrum




Empirical Mean and Variance

Empirical mean = average of all pixels of an image

1M1N1

g-= MN n<0 9mn with M x N image size
Simplified notation: g- iEK‘lg
' K k=0 Jk B y
_ _ -1+
Incremental computation: g, = 0 O = O k]) O k=2..K

Empirical variance = average of squared deviation of all pixels from mean
2 1 K —\2 1 K 2 _
= REk:l(gk - g) = Rzk=1gk -

Incremental computation:

Og -0 OE _ (05-1 + gk J(k-1)+ gk (gk a(k-1D+ gk)
k k




Greyvalue Histograms

A greyvalue histogram h¢(z) of an image f provides the frequency of
greyvalues z in the image.

The histogram of an image with N quantization levels is represented
by a 1D array mit N elements.
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h¢(z)
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A greyvalue histogram describes discrete values, a greyvalue
distribution describes continuous values.




Example of Greyvalue Histogram

image histogram

o

255 (darkest)

A histogram can be "sharpened" by
discounting pixels at edges
(more about edges later):

0 255




Histogram Modification

Greyvalues may be remapped into new greyvalues to
« facilitate image analysis
 improve subjective image quality

Example: Histogram equalization

..||I!||!U!|;H:I|[III:II‘ > IR

1. Cut histogram into N stripes of equal area (N = new number of greyvalues)
2. Assign new greyvalues to consecutive stripes

Examples show improved resolution
of image parts with most frequent
greyvalues (road surface)




Projections

A projection of greyvalues in an image is the sum of all greyvalues
orthogonal to a base line:

Pn = E Omn

T

\T

Often used:

"row profile" =row vector of all (normalized) column sums
"column profile" = column vector of all (normalized) row sums
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Cross-sections

A cross-section of a greyvalue image is a vector of all pixels along a
straight line through the image.

« fast test for localizing objects

« commonly taken along a row or column

"memm,




Noise

Deviations from an ideal image can often be modelled as additive noise:

A T I

Typical properties:

- mean 0, variance o > 0
e spatially uncorrelated: EJ Fij r'mn] =0 forij =mn
« temporally uncorrelated: E| Fij.t1 Tij o] =0 for tl =t2

r2

. . . 1
- Gaussian probability density: p(r)= ——e 2°

o271

Noise arises from analog signal generation (e.g. amplification) and
transmission.

There are several other noise models other than additive noise.




Noise Removal by Averaging

K

Principle: fK = —Erk = (0 sample mean approaches density mean
k=1

There are basically 2 ways to "average out" noise:

- temporal averaging if several samples 9ij t of the same pixel but at
differenttimest =1 ... T are available

- spatial averaging if g,y = 0ij for all pixels g, INn @ region around 9ij
How effective is averaging of K greyvalues?

. 1&X

T K Erk Is random variable with mean and variance depending on K
k=1

K

E:fK] = %ZE[rk] -0 mean
=1
- K K 2
E_('r‘K - E['r‘K])Z] _ E['r‘KZ] = E[K—lz(zlrk)z} - K_lzkzlE[ri] = % variance

Example: In order cut the standard deviation o in half, 4 values have to averaged




Example of Averaging

intensity averaging with

5 x 5 mask
111(1(111
111(1(111

1

—~—— |1(1]|1(1]|1

25
111(1(111
111(1(111
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Simple Smoothing Operations

Example of

1. Averaglng 3-by-3 region D

Gij = Egmn D is region around gj;
gmn

2. Removal of outliers

)
" Egmn if |gj - Egmn =S  Sis threshold
gij ~ S IDlgmn I gmn
L Y _
Example of weights

3. Weighted average in 3-by-3 region
~ 1121
9 = EW EWkgk w, = weights in D ARE

k 121




Bimodal Averaging

To avoid averaging across edges, assume bimodal greyvalue distribution
and select average value of modality with largest population.

1. Determine gp = ﬁ Egmn

Imn<

2. A= {gk with g, = g} B={g, with g, < g}

Yo if|Al=[B]
S |A|
. g =4 ngA
; |B| Egk otherwise
ngB
Example

g=167 mm) A,B mm) g'=13
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Averaging with Rotating Mask

Replace center pixel by average over pixels from the most

homogeneous subset taken from the neighbourhood of center pixel.

Measure for (lack of) homogeneity is dispersion o? (= empirical
variance) of the greyvalues of aregion D:

_ 1

9 = oI Egmn “ |D| E(an gj

I I ImnE€ED e

Possible rotated masks in 5 x 5 neighbourhood of center pixel:

Lol

1 1 1 1 1 1
Algorithm:

1. Consider each pixel g;

2. Calculate dispersion in mask for all rotations

3. Choose mask with minimum dispersion

4. Assign average greyvalue of chosen mask to g;
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Median Filter

Median of a distribution P(x): X, such that P(x <X ,) =1/2

Median Filter:

gij = max a with g, €D and [{g, <a}|< >

DI

1. Sort pixels in D according to greyvalue
2. Choose greyvalue in middle position

Example:

11

14

15

13

12

25

15

19

26

I

11 =)

12
13
5
15
19
25
26

greyvalue of center pixel
of region is set to 15

Median Filter reduces influence of outliers in either direction!
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Local Neighbourhood Operations

Many useful image transformations may be defined as an instance of
a local neighbourhood operation:

Generate a new image with pixels gmn by applying operator
f to all pixels 9jj of an image

Omnn = (91.95.--9¢)  91.95.--.0k €D;

example of

neighbour- T - mn

hood

Pixel indices i, ] may be incremented by steps larger than 1 to obtain
reduced new image.

15




Example of Sharpening

Intensity sharpening
with 3 x 3 mask

-1(-1(-1
-1 9(-1
-1(-1(-1

"unsharp masking" =
subtraction of blurred image

gij = gij

T Imn
|D| I9mn €D
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Spectral Image Properties

An image function may be considered a sum of spatially sinusoidal
components of different frequencies.

The frequency spectrum indicates the magnitudes of the spatial
frequencies contained in an image.

Principle: fy=v

Ay »
— \\ > _
2\\\ > f =u

—
» X »
»

Important qualitative properties of spectral information:
« spectral information is independent of image locations
 sharp edges give rise to high frequencies

* noise (= disturbances of image signal) is often high-frequency
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lllustration of
1-D Fourier Series Expansion

original waveform approximation of a rectangular pulse
with 1 ... 5 sinusoidal components

u

Jy\\¢” \\j /A

0= THE000 =

1 |

N VW

sinusoidal components o N

add up to original waveform S Yod

Online demonstration of Fourier Series approximations at http://www.jhu.edu/~signals/fourier2/
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Discrete Fourier Transform (DFT)

Computes image representation as a sum of sinusoidals.

Discrete Fourier Transform: Inverse Discrete Fourier Transform:
M-1 N-1 mu nﬁv) M-1 N-1 zm(%mﬁv)
E Egmn O = ), ) Gue
u=0 v=0
for u=0...M-1,v=0... N- for m=0..M-1,n=0... N-1

Notation for computing the Fourier Transform:

Gyy = F{ Imn }
n=Fc

uv }

Transform is based on periodicity
assumption

=> periodic continuation may
cause boundary effects
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Basic Properties of DFT

e Linearity: Flagna+bgmnt=aFogmn}+b Fgmn}
 Symmetry: G y.v=Gyy for real g,,n (such as images)

In general, the Fourier transform is a complex function with a real and an
imaginary part:
_ : Euler’s formula:
Guv = Ruv T 1y o .
re“=rcos(z)+risin(z)

2 2
|Guvl= \/Ruv + luv frequency spectrum or amplitude spectrum

Puv = |Guy = Rlzjv + |l2,v power spectrum or spectral density

A
®,, = tan™ Ru_v) phase spectrum
uv




lllustrative Example of

Fourier Transform
9(x, y) G, v)

: | }
A
In ?f: il

_
>y ‘

2D image function

X
X

Note that large spectral amplitudes
occur in directions vertical to prominent
edges of the image function

frequency spectrum as
an intensity function
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Examples of Fourier Transform Pairs

v
v

<

S S

> > > >
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Fast Fourier Transform (FFT)

Ordinary DFT needs ~(MN)2 operations for an M x N image.
Example: M =N =512, 10° sec/operation => 64 sec

FFT is based on recursive decomposition of g,,,, into subsequences.

=> multiple use of partial results => ~MN log,(MN) operations
Same example needs only 0.0046 sec

Decomposition principle for 1D Fourier transform:

1 N-1 —ZJ'IJirE _ { gn(l) } - { J2n } _
Gr = NEn:OQne N {gn}_<{gn(2)}:{g2n+1} n=0. N/2-1

1 E_]_ 23tir2n 231:irM
G, =N z Igle N +gle N r=0..N-1

G, =GP +e N GO

ol =0..N/2-1

2
Gn2 = GY-e NGY




Convolution

Convolution is an important operation for describing and analyzing
linear operations, e.g. filtering.

Definition of 2D convolution for continuous signals:

g (xy)= ; } f(r,s)h(x-r,y-s)drds =f(x,y)=h (x,y)

—00 —00

Convolution in the spatial domain is dual to multiplication in the
frequency domain:

F{f(x, y) *h(x, ¥) } = F(u, v) H(u, v)
F{f(x, y) h(x, y) } = F(u, v) * H(u, v)

H can be interpreted as attenuating or amplifying the frequencies of F.
=> Convolution describes filtering in the spatial domain.

24




Filtering in the Frequency Domain

A filter transforms a signal by modifying its spectrum.
G(u, v) = F(u, v) H(u, v)

H is the frequency transfer function of the filter.

« low-pass filter low frequencies pass, high frequencies are
attenuated or removed

 high-pass filter high frequencies pass, low frequencies are
attenuated or removed

« band-pass filter frequencies within a frequency band pass,
other frequencies below or above are
attenuated or removed

Often (but not always) the noise part of an image is high-frequency and
the signal part is low-frequency. Low-pass filtering then improves the
signal-to-noise ratio.
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Filtering in the Spatial Domain

Filtering in the spatial domain is described by convolution.

g (x,y) = } } f(r,s)h(x-r,y-s)drds=f(x,y)=h (x,y)

—00 —00

Commonly used description for the effect of
technical components in linear signal theory:

s{t) —1 h —> s;’(t)

s'(t) = +fwh(r) s(t-r) dr

- as(t) +bsyt) —

—> asq (t) +bs,(t)

So(t)y —1 h —» s,(t)

An impulse d as input generates the filter function h(x, y) as output:

h (x,y) = } } h(r,s)d (x-r,y-s)drds=h (x,y)*0 (X,y)

—00 —00

h(x, y) is often called "impulse response”

26




Low-pass Filters

\Y

H|

Ideal low-pass filter

All frequencies above
W are removed

1for Ju?+v? =W
IH(u,V)I={

0 otherwise
Note that the filter function h(x, y) is rotation symmetric and

h(r) ~ sin 2eWr / (2=Wr) with 12 = x2 + y2
=> impuls-shaped input structures may produce ring-like structures as output

Gaussian filter

A Gaussian filter has an optimally smooth boundary, both in the frequency
and the spatial domain. It is important for several advanced image analysis
methods, e.g. generating multiscale images.

X +y?

02

N | =

R L Ry W
Huv)=e - 272

27




Discrete Filters

For periodic discrete 2D signals (e.g. discrete images), the convolution
operator which describes filtering is

M-1 N-1

9= > D fmhi g

m=0 n=0

Each pixel 9jj of the filtered image is the sum of the products of the
original image with the mirror filter h_, ., placed at location ij.

Example:

Nmn = N.m . IS @ bell-shaped function

. The filtering effect is a smoothing operation
by weighted local averaging.

The choice of weights of a local filter - the convolution mask - may
influence the properties of the output image in important ways, e.g.
with regard to remaining noise, blurred edges, artificial structures,

preserved or discarded information.
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Matrix Notation for Discrete Filters

M-1 N-1
The convolution operation gij - mE_O nEofmnhi—m,j—n
may be expressed as matrix multipl_icat_ion g=HTf.
Vectors g and f are obtained by stacking rows (or columns) onto each other:
A" =[90 Y01 - Jon1910 911 - Gant - Ive10 Ivea 1 -+ Ivea el

iT = [fOO 1:01 fO N-1 1:10 fll fl N-1 =-* fM-lO fM-l 1- fM-l N-l]

The filter matrix H is obtained by constructing a matrix H, for each row j of h;,

hjl th hJ N-1 2

_hj N-1 hj N-2 h1|\|_3 th_

H= B H0 HM-l H|\/|-2 Hl —
Hy Ho Hy1 H,

_ P Hy.2 H-s Hy |

29




Avoiding Wrap-around Errors

Wrap-around errors result from filter responses due to the
periodic continuation of image and filter.

To avoid wrap-around errors, image and filter have to be
extended by zeros.

. _ _ To avoid wrap-around error:
A x B original image size

C x D original filter size MzA+C-1
M x N extended image and filter size N=zB+D-1
Example:
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Convolution Using the FFT

Convolution in the spatial domain may be performed more efficiently
using the FFT.

M-1 N-1
g., E Egmn i-m,j-n (MN)? operations needed

m=0 n=0

Using the FFT and filtering in the frequency domain:

FFT H,, FFT-
mm) Gy mmm) Gy mmm) 9mn
MN log(MN) MN MN log(MN) # of operations

Example with M =N = 512:
« straight convolution needs ~ 1010 operations
« convolution using the FFT needs ~107 operations
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Convolution and Correlation

The crosscorrelatlon function of 2 stationary stochastic processes f and h is:

g(xy)—fff(r sSYh (r-x,s-=y)drds=f (x,y)oh (X,y)=f (x,y)xh (=x,-Vy)

— 00— 00

Compare with convolution: filter function is not mirrored!

Correlation using Fourier Transform:

F{f(x,y) o h(x,y)}=F*u, v) H(u, v) F*, f* are complex conjugates
F{ f*(x, y) h(x, y) } = F(u, v) o H(u, V)

Correlation is particularly important for matching problems, e.qg.
matching an image with a template.

Correlation may be computed more efficiently by using the FFT.

32




Correlation and Matching

Matching a template with an image:

image template

@ « find degree of match for all
locations of template

 find location of best match

For (periodic) discrete images, crosscorrelation at (i, j) is

M-1 N-1
cj = 2, D, fonPm_in;
m=0 n=0
Compare with Euclidean distance between f and h at location (i, j):
M-1 N-1 2
d;; = 2 Eo(fmn hm_m_j) = Since image energy and

0 2 Mol N M-1 N1 ) templlatt(_e energy are cznsttant,
_ correlation measures distance
> 3 (o) =23 > o in i+ > > (M
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Principle of Image Restoration

Typical degradation model of a continuous 1-dimensional signal:

z(t) g(t) original signal
h(t) degrading filter
g(t) —— h(t) g (t) z(t) additive noise

g’ (t) degraded signal

How can one process g’ (t) to obtain a g’ (t) which best approximates g(t)?
?

, ' . r(t) restoring filter
g (0 (®) g () g’(t) restored signal

Note that a perfect restoration g ’'(t) = g(t) may not be possible even if z(t) =0.

G(f) —— H({) —> G'(f) —— H(f) —> G"(f)

The ideal restoring filter H'(f) = 1/H(f) may not exist because of zeros of H(f).
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Image Restoration by Minimizing
the MSE

Degradation in matrix notation: g=Hg+z

Restored signal g~ must minimize the mean square error J(g") of the

remaining difference: in [l g- Ha |l
min |[g - Hg

dJ(@)ég =0=-2H"(g" -HQ"")

g"'= (HTH)*HTg

t pseudoinverse of H

If M =N and hence H is a square matrix, and if H! exists, we can simplify:

9 =H'g

The matrix H1 gives a perfect restoration if z=0.
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