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Global Image Properties

Global image properties refer to an image as a whole rather than
components. Computation of global image properties is often required
for image enhancement, preceding image analysis.

We treat

•   empirical mean and variance

•   histograms

•   projections

•   cross-sections

•   frequency spectrum
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Empirical Mean and Variance

Empirical mean = average of all pixels of an image
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Empirical variance = average of squared deviation of all pixels from mean
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Greyvalue Histograms

A greyvalue histogram hf(z) of an image f provides the frequency of
greyvalues z in the image.

The histogram of an image with N quantization levels is represented
by a 1D array mit N elements.

hf(z)

qN-1

z

A greyvalue histogram describes discrete values, a greyvalue
distribution describes continuous values.
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Example of Greyvalue Histogram

255 (darkest)0

image histogram

A histogram can be "sharpened" by
discounting pixels at edges
(more about edges later):

2550
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Histogram Modification

Greyvalues may be remapped into new greyvalues to
•   facilitate image analysis
•   improve subjective image quality

Example: Histogram equalization

1. Cut histogram into N stripes of equal area (N = new number of greyvalues)
2. Assign new greyvalues to consecutive stripes

Examples show improved resolution
of image parts with most frequent
greyvalues (road surface)
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Projections

A projection of greyvalues in an image is the sum of all greyvalues
orthogonal to a base line:
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Often used:

"row profile" = row vector of all (normalized) column sums
"column profile" = column vector of all (normalized) row sums
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Cross-sections

A cross-section of a greyvalue image is a vector of all pixels along a
straight line through the image.

•   fast test for localizing objects

•   commonly taken along a row or column
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Noise

Deviations from an ideal image can often be modelled as additive noise:

= +

Typical properties:

•  mean 0, variance σσσσ2 > 0

•  spatially uncorrelated:   E[ rij rmn] = 0 for ij ≠≠≠≠ mn
•  temporally uncorrelated:   E[ rij,t1 rij,t2] = 0 for t1 ≠≠≠≠ t2

•  Gaussian probability density: pp((rr)) =
11

σ 22π
ee

−
rr22

22σ22

Noise arises from analog signal generation (e.g. amplification) and
transmission.

There are several other noise models other than additive noise.
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Noise Removal by Averaging

Principle:

There are basically 2 ways to "average out" noise:
- temporal averaging if several samples  gij,t  of the same pixel but at

different times t = 1 ... T are available

- spatial averaging if gmn ≈≈≈≈ gij for all pixels gmn in a region around gij

How effective is averaging of K greyvalues?
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Example of Averaging

intensity averaging with
5 x 5 mask

11 11

11 11

11 11

11 11

11 11

1

1

1

1

1

11
2255



11

Simple Smoothing Operations

1.  Averaging

D is region around gij
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Example of 
3-by-3 region D

2.  Removal of outliers
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S is threshold

3.  Weighted average
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Note that these operations are heuristics and not well founded!

Example of weights 
in 3-by-3 region
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A

B

Bimodal Averaging

To avoid averaging across edges, assume bimodal greyvalue distribution
and select average value of modality with largest population.
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Example:
gg = 1166 77,, A, B              g´= 1311 14 15

13 12 25

15 19 26
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Averaging with Rotating Mask

Replace center pixel by average over pixels from the most
homogeneous subset taken from the neighbourhood of center pixel.

Measure for (lack of) homogeneity is dispersion σσσσ2 (= empirical
variance) of the greyvalues of a region D:
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Possible rotated masks in 5 x 5 neighbourhood of center pixel:

Algorithm:
1. Consider each pixel gij

2. Calculate dispersion in mask for all rotations
3. Choose mask with minimum dispersion
4. Assign average greyvalue of chosen mask to gij
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Median Filter

Median of a distribution P(x):   xm such that P(x < xm) = 1/2

Median Filter:

ˆ̂ggiijj =   mmaaxx  aa  wwiitthh  ggkk ∈DD  aanndd  ||{{ggkk < aa}}||<
||DD||
22

1. Sort pixels in D according to greyvalue
2. Choose greyvalue in middle position

Example: 11 14 15

13 12 25

15 19 26

11
12
13
14
15
15
19
25
26

greyvalue of center pixel
of region is set to 15

Median Filter reduces influence of outliers in either direction!
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Local Neighbourhood Operations

Many useful image transformations may be defined as an instance of
a local neighbourhood operation:

ˆ̂ (( ,, ,,,,......,, )) ,,......,,gg gg gg gg gg gg ggmmnn KK KK DDiijj= ∈ff                  11 22 11 22

Generate a new image with pixels         by applying operator
f to all pixels gij of an image

ˆ̂ggmmnn

ij

Dij

mn

Pixel indices i, j may be incremented by steps larger than 1 to obtain
reduced new image.

example of
neighbour-

hood
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Example of Sharpening

intensity sharpening
with 3 x 3 mask

-1 -1 -1

-1 -1

-1 -1 -1

"unsharp masking" =
subtraction of blurred image

9

ĝij == gij −−
1

|D|
gmn

gmn∈∈ D
∑∑
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Spectral Image Properties
An image function may be considered a sum of spatially sinusoidal
components of different frequencies.

The frequency spectrum indicates the magnitudes of the spatial
frequencies contained in an image.

Principle:

x

y

fx = u

fy = v

Important qualitative properties of spectral information:

•   spectral information is independent of image locations

•   sharp edges give rise to high frequencies

•   noise (= disturbances of image signal) is often high-frequency
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Illustration of
1-D Fourier Series Expansion

original waveform

sinusoidal components
add up to original waveform

approximation of a rectangular pulse
with 1 ... 5 sinusoidal components

Online demonstration of Fourier Series approximations at http://www.jhu.edu/~signals/fourier2/
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Discrete Fourier Transform (DFT)
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Transform is based on periodicity
assumption

Discrete Fourier Transform: Inverse Discrete Fourier Transform:

=> periodic continuation may
cause boundary effects

for   u = 0 ... M-1, v = 0 ... N-1 for   m = 0 ... M-1, n = 0 ... N-1

Notation for computing the Fourier Transform:

Guv = F{ gmn }

gmn = F-1{ Guv }

Computes image representation as a sum of sinusoidals.
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Basic Properties of DFT

In general, the Fourier transform is a complex function with a real and an
imaginary part:

Guv = Ruv + i Iuv

||GGuuvv||= RRuuvv
22 + IIuuvv

22
frequency spectrum or amplitude spectrum

power spectrum or spectral densityPPuuvv =   ||GGuuvv||22 = RRuuvv
22 + IIuuvv

22

Φuuvv = ttaann−11 IIuuvv
RRuuvv









 phase spectrum

Euler´s formula:    
r eiz = r cos(z) + r i sin(z)

•  Linearity: F{ a gmn + b gmn} = a F{ gmn } + b F{ gmn }

•  Symmetry:   G-u,-v = Guv    for real gmn (such as images)

Recommended reading:

Gonzalez/Wintz
Digital Image Processing
Addison Wesley 87 
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Illustrative Example of
Fourier Transform

x

y

g(x, y)

X
Y

A

frequency spectrum

frequency spectrum as
an intensity function

2D image function

G(u, v)

Note that large spectral amplitudes
occur in directions vertical to prominent
edges of the image function
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Examples of Fourier Transform Pairs

• • • • • •• • • • • • • • • • • •

• • • • • •
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Fast Fourier Transform (FFT)
Ordinary DFT needs ~(MN)2 operations for an M x N image.
Example:  M = N = 512, 10-9 sec/operation  =>  64 sec

FFT is based on recursive decomposition of gmn into subsequences.
 =>   multiple use of partial results    =>   ~MN log2(MN) operations
Same example needs only 0.0046 sec

Decomposition principle for 1D Fourier transform:
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All Gr may be computed
by 2(N/2)2 instead of
(N)2 operations!
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Convolution

Convolution is an important operation for describing and analyzing
linear operations, e.g. filtering.

Definition of 2D convolution for continuous signals:

gg xx yy ff rr ss hh xx rr yy ss ddrr ddss ff xx yy hh xx yy                  (( ,, )) (( ,, )) (( ,, )) (( ,, )) (( ,, ))= − − = ∗
−∞

∞

−∞

∞

∫∫

Convolution in the spatial domain is dual to multiplication in the
frequency domain:

F{ f(x, y) * h(x, y) } = F(u, v) H(u, v)

F{ f(x, y) h(x, y) } = F(u, v) * H(u, v)

H can be interpreted as attenuating or amplifying the frequencies of F.

=> Convolution describes filtering in the spatial domain.
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Filtering in the Frequency Domain

A filter transforms a signal by modifying its spectrum.

G(u, v) = F(u, v) H(u, v)

H is the frequency transfer function of the filter.

• low-pass filter low frequencies pass, high frequencies are
attenuated or removed

• high-pass filter high frequencies pass, low frequencies are
attenuated or removed

• band-pass filter frequencies within a frequency band pass,
other frequencies below or above are 
attenuated or removed

Often (but not always) the noise part of an image is high-frequency and
the signal part is low-frequency. Low-pass filtering then improves the
signal-to-noise ratio.
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Filtering in the Spatial Domain

Filtering in the spatial domain is described by convolution.

gg xx yy ff rr ss hh xx rr yy ss ddrr ddss ff xx yy hh xx yy                  (( ,, )) (( ,, )) (( ,, )) (( ,, )) (( ,, ))= − − = ∗
−∞

∞

−∞

∞

∫∫

Commonly used description for the effect of
technical components in linear signal theory:

s1(t)  h s1´(t)

s2(t)  h s2´(t)

a s1(t) + b s2(t)  h a s1´(t) + b s2´(t) 

An impulse δδδδ as input generates the filter function h(x, y) as output:

hh xx yy hh rr ss xx rr yy ss ddrr ddss hh xx yy xx yy                  (( ,, )) (( ,, )) (( ,, )) (( ,, )) (( ,, ))= − − = ∗
−∞

∞

−∞

∞

∫∫ δ δ

′ss ((tt)) = hh((rr))  ss
−∞

+∞

∫ ((tt − rr))  ddrr

h(x, y) is often called "impulse response"
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Low-pass Filters

u

v|H|

  1  for 
|H(u, v)|=

  0  otherwise  

uu22 + vv22 ≤ WW

Ideal low-pass filter

W
All frequencies above
W are removed

Note that the filter function h(x, y) is rotation symmetric and 
h(r) ~ sin 2ππππWr / (2ππππWr)   with   r2 = x2 + y2

=>  impuls-shaped input structures may produce ring-like structures as output

Gaussian filter

A Gaussian filter has an optimally smooth boundary, both in the frequency
and the spatial domain. It is important for several advanced image analysis
methods, e.g. generating multiscale images.
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Discrete Filters

For periodic discrete 2D signals (e.g. discrete images), the convolution
operator which describes filtering is

ggiijj =   ffmmnn
nn=00

NN--11

∑
mm=00

MM−11

∑ hhii−mm,,jj−nn

Each pixel gij of the filtered image is the sum of the products of the
original image with the mirror filter h-m,-n placed at location ij.

Example:
hmn = h-m,-n is a bell-shaped function

The filtering effect is a smoothing operation
by weighted local averaging.

The choice of weights of a local filter - the convolution mask - may
influence the properties of the output image in important ways, e.g.
with regard to remaining noise, blurred edges, artificial structures,
preserved or discarded information.
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Matrix Notation for Discrete Filters
ggiijj =   ffmmnn

nn=00

NN--11

∑
mm=00

MM−11

∑ hhii−mm,,jj−nnThe convolution operation

may be expressed as  matrix multiplication g = H f.

gT = [g00 g01 ... g0 N-1 g10 g11 ... g1N-1 ... gM-1 0 gM-1 1 ... gM-1 N-1]

fT = [f00 f01 ... f0 N-1 f10 f11 ... f1 N-1 ... fM-1 0 fM-1 1 ... fM-1 N-1]

Hj = hj 0 hj N-1 hj N-2 ... hj 1
hj 1 hj 0 hj N-1 ... hj 2
•
•
•
hj N-1 hj N-2 h1 N-3 ... hj 0 

Vectors g and f are obtained by stacking rows (or columns) onto each other:

The filter matrix H is obtained by constructing a matrix Hj for each row j of hij:

H = H0 HM-1 HM-2 ... H1
H1 H0 HM-1 ... H2
.
.
.

HM-1 HM-2 HM-3 ... H0
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Avoiding Wrap-around Errors

Wrap-around errors result from filter responses due to the
periodic continuation of image and filter.

To avoid wrap-around errors, image and filter have to be
extended by zeros.

A x B original image size
C x D original filter size
M x N extended image and filter size

M ≥≥≥≥ A + C - 1
N ≥≥≥≥ B + D - 1  

To avoid wrap-around error:

Example:
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Convolution Using the FFT

Convolution in the spatial domain may be performed more efficiently
using the FFT.

′ =
==

−

∑∑ − −gg gg hhiijj
nnmm

MM

mmnn ii mm jj nn  
NN--11

0000

11

,, (MN)2 operations needed

Using the FFT and filtering in the frequency domain:

gmn Guv Guv´ gmn´
FFT Huv FFT-1

MN log(MN)        MN MN log(MN) # of operations

Example with M = N = 512:
• straight convolution needs ~ 1010 operations
• convolution using the FFT needs ~107 operations
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Convolution and Correlation

The crosscorrelation function of 2 stationary stochastic processes f and h is:

Compare with convolution: filter function is not mirrored!

Correlation is particularly important for matching problems, e.g.
matching an image with a template.

Correlation may be computed more efficiently by using the FFT.

Correlation using Fourier Transform:

F{ f(x, y) o h(x, y) } = F*(u, v) H(u, v)

F{ f*(x, y) h(x, y) } = F(u, v) o H(u, v)

F*, f* are complex conjugates

  
g (x,y) ==  f (r,s) 

−−∞∞

∞∞

∫∫
−−∞∞

∞∞

∫∫ h (r −− x,s −− y) dr ds == f (x,y) o h (x,y) == f (x,y)∗∗h (−−x,−−y)
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Correlation and Matching

For (periodic) discrete images, crosscorrelation at (i, j) is

• find degree of match for all
locations of template

• find location of best match

image                      template   

cciijj mmnn mm iinn jjff hh
nnmm

MM

=
==

−

∑∑ − −  
NN--11

0000

11

,,

ddiijj =   ffmmnn − hhmm−ii..nn− jj( )22

nn=00

NN--11

∑
mm=00

MM−11

∑ =

  ffmmnn( )22

nn=00

NN--11

∑
mm=00

MM−11

∑ − 22   ffmmnnhhmm−ii..nn− jj +   hhmm−ii..nn− jj( )22

nn=00

NN--11

∑
mm=00

MM−11

∑
nn=00

NN--11

∑
mm=00

MM−11

∑

Matching a template with an image:

Compare with Euclidean distance between f and h at location (i, j):

Since image energy and
template energy are constant,
correlation measures distance
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Principle of Image Restoration
Typical degradation model of a continuous 1-dimensional signal: 

h(t)g(t) +

z(t)

g´(t)

g(t) original signal
h(t) degrading filter
z(t) additive noise
g´(t) degraded signal

How can one process g´(t) to obtain a g´´(t) which best approximates g(t)?

r(t)g´(t) g´´(t)
r(t) restoring filter
g´´(t) restored signal

Note that a perfect restoration  g´´(t) = g(t) may not be possible even if z(t) ≡≡≡≡0.

H(f)G(f) G´(f) H´(f) G´´(f)

The ideal restoring filter H´(f) = 1/H(f) may not exist because of zeros of H(f).

?
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Image Restoration by Minimizing
the MSE

Degradation in matrix notation: g´= H g + z

Restored signal g´´ must minimize the mean square error J(g´´) of the
remaining difference:

min ||||||||    g´- Hg´´||||||||2

δδδδJ(g´´)/δδδδg´´ = 0 = -2HT(g´ - Hg´´)

g´´= (HTH)-1HTg´

If M = N and hence H is a square matrix, and if H-1 exists, we can simplify:

g´´= H-1g´

pseudoinverse of H

The matrix H-1 gives a perfect restoration if  z ≡≡≡≡    0.  


