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Image Data Compression
Image data compression is important for
- image archiving e.g. satellite data
- image transmission e.g. web data
- multimedia applications e.g. desk-top editing

Image data compression exploits redundancy for more efficient coding:

digitized image data redundancy
reduction

coding

transmission,
storage, archiving

decodingreconstructiondigitized image
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Run Length Coding

Images with repeating greyvalues along rows (or columns) can be
compressed by storing "runs" of identical greyvalues in the format:

greyvalue1 repetition1 greyvalue2 repetition2 • • •

For B/W images (e.g. fax data) another run length code is used: 

row # column # 
run1 begin

column # 
run1 end

column # 
run2 begin

column # 
run2 end • • •

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

run length coding:

(0 3 5 9 9)
(1 1 7 9 9)
(3 4 4 6 6 8 8 10 10 12 14)
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Probabilistic Data Compression

A discrete image encodes information redundantly if
1. the greyvalues of individual pixels are not equally probable
2. the greyvalues of neighbouring pixels are correlated

Information Theory provides limits for minimal encoding of probabilistic
information sources.

Redundancy of the encoding of individual pixels with G greylevels each:

HH = PP((gg))  lloogg22

11
PP((gg))gg=00

GG−11

∑

r = b - H b = number of bits used for each pixel

H = entropy of pixel source
    = mean number of bits required to encode

information of this source

= lloogg22 GG 

The entropy of a pixel source with equally probable greyvalues is equal to
the number of bits required for coding.
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Huffman Coding
The Huffman coding scheme provides a variable-length code  with
minimal average code-word length, i.e. least possible redundancy, for a
discrete message source. (Here messages are greyvalues)

1. Sort messages along increasing probabilities such that g(1) and g(2)

are the least probable messages

2. Assign 1 to code word of g(1) and 0 to codeword of g(2)

3. Merge g(1) and g(2) by adding their probabilities

4. Repeat steps 1 - 4 until a single message is left.

Example:

message probability code word coding tree

g1 0.3 00

g2 0.25 01

g3 0.25 10

g4 0.10 110

g5 0.10 111

0

1 0.20

0

1
0.45

0

1 0.55
0

1

Entropy: H = 2.185
Average code word
length of Huffman
code: 2.2
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Statistical Dependence
An image may be modelled as a set of statistically dependent random
variables with a multivariate distribution p(x1, x2, ..., xN) = p(x).

Often the exact distribution is unknown and only correlations can be
(approximately) determined.

Correlation of two variables: 

E[xixj] = cij

Uncorrelated variables need not be statistically independent:

E[xixj] = 0                 p(xixj) = p(xi) p(xj)

For Gaussian random variables, uncorrelatedness implies statistical independence.  

Correlation matrix:

E[x xT] = c11 c12  c13   ... 
c21 c22  c23     
c31 c32  c33   
... 

Covariance matrix:

E[(x-m) (x-m)T] = 

E[(xi-mi)(xj-mj)] = vij   with mk = mean of xk

Covariance of two variables:

v11 v12  v13   ... 
v21 v22  v23     
v31 v32  v33   
... 
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Karhunen-Loève Transform

Determine uncorrelated variables y from correlated variables x by a linear
transformation.

y = A (x - m)

E[y yT]  =  A E[(x - m) (x - m)T] AT =  A V AT  =  D           D is a diagonal matrix

• An orthonormal matrix A which diagonalizes the real symmetric
covariance matrix V always exists.

• A is the matrix of eigenvectors of V, D is the matrix of corresponding
eigenvalues.

x = AT y + m reconstruction of x from y

If  x is viewed as a point in n-dimensional Euclidean space, then A defines a
rotated coordinate system.

(also known as Hotelling Transform or Principal Components Transform )
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Illustration of Minimum-loss
Dimension Reduction

Using the Karhunen-Loève transform data compression is achieved by

• changing (rotating) the coordinate system

• omitting the least informative dimension(s) in the new coodinate system

Example:

x1

x2

• ••
•

• • •

• •

••
•

•

•
•

x1

x2

• • • •• •••••
• •• •

•

y1
y2

• •
••• •

•

•
•

•

• • •
• • y1

y2

• • • •• ••••• • •• •• y1
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Compression and Reconstruction with
the Karhunen-Loève Transform

Assume that the eigenvalues λλλλn and the corresponding eigenvectors in A are
sorted in decreasing order λλλλ1 ≥≥≥≥ λλλλ2 ≥≥≥≥ ... ≥≥≥≥ λλλλN

D = λλλλ1 0 0 ...
0 λλλλ2 0
0 0 λλλλ3
...

Then x can be transformed into a K-dimensional vector yK, K < N, with a
transformation matrix AK containing only the first K eigenvectors of A
corresponding to the largest K eigenvalues.

′ = +xx AA yy mmKK
TT

KK
  

Hence yK can be used for data compression!

yK = AK (x - m)

The approximate reconstruction x´ minimizing the MSE is

Eigenvectors a and eigenvalues    λλλλ are defined by
V a = λλλλ a and can be determined by solving 
det [V - λλλλ    I ] = 0.

There exist special procedures for determining
eigenvalues of real symmetric matrices V.
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Example for Karhunen-Loève Compression

N = 3

xT = [x1 x2 x3]

det (V - λλλλI) = 0 λλλλ1 = 3     λλλλ2 = 2  λλλλ3 = 1

V = 2 -0,866 -0,5
-0,866 2 0
-0,5 0 2

AT = 0,707 0 0,707
-0,612 0,5 0,612
-0,354 -0,866 0,354

D = 3 0 0
0 2 0
0 0 1

Compression into K=2 dimensions:

m = 0

y2 = A2 x = 0,707 -0,612 -0,354     x
0 0,5 -0,866

Reconstruction from compressed values: 

x´= A2
T y = 0,707 0 y

-0,612 0,5
-0,354 0,354

Note the discrepancies between
the original and the approximated
values:

x1´= 0,5 x1 - 0,43 x2 - 0,25 x3

x2´= -0,085 x1 - 0,625 x2 + 0,39 x3

x3´= 0,273 x1 + 0,39 x2 + 0,25 x3
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Predictive Compression

Principle:
• estimate gmn´ from greyvalues in the neighbourhood of (mn)
• encode difference dmn = gmn - gmn´
• transmit difference data + predictor

For a 1D signal this is known as Differential Pulse Code Modulation (DPCM):

quantizer

predictor

f(t) d(t)
+

-

+

+
predictor

d(t)
+

f(t)

compression reconstruction

Linear predictor for a neighbourhood of K pixels:

gmn´= a1g1 + a2g2 + ... + aKgK
Computation of a1 ... aK by minimizing the expected reconstruction error

f´(t) f´(t)

coder decoder
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Example of Linear Predictor

For images, a linear predictor based on 3 pixels (3rd order) is often sufficient:

gmn´ = a1 gm,n-1 + a2 gm-1,n-1 + a3 gm-1,n

If gmn is a zero mean stationary random process with autocorrelation C,
then minimizing the expected error gives

a1c00 + a2c01 + a3c11  = c10 
a1c01 + a2c00 + a3c10  = c11
a1c11 + a2c10 + a3c00  = c01

This can be solved for a1, a2, a3 using Cramer´s Rule. m

n 01 11

00 10

Example:

Predictive compression with 2nd order
predictor and Huffman coding, ratio 6.2

Left: Reconstructed image

Right: Difference image (right) with 
maximal difference of 140 greylevels
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Discrete Cosine Transform (DCT)
Discrete Cosine Transform is commonly used in image compression,
e.g. in JPEG (Joint Photographic Expert Group) Baseline System standard.

GGuuvv =
11

22NN33 ggmmnnnn=00

NN−11

∑mm=00

NN−11

∑ ccooss[[((22mm + 11))uuπ ]]  ccooss[[((22nn + 11))vvπ ]]

GG0000 =
11
NN

ggmmnnnn=00

NN−11

∑mm=00

NN−11

∑Definition of DCT:

Inverse DCT: ggmmnn =
11
NN

GG0000 +
11

22NN33 GGuuvvvv=00

NN−11

∑uu=00

NN−11

∑ ccooss[[((22mm + 11))uuπ ]]  ccooss[[((22nn + 11))vvπ ]]

Example:

DCT compression with ratio 5.6

Left: Reconstructed image

Right: Difference image (right)
with maximal difference of
125 greylevels

Compression is accomplished by blockwise DCT + Huffman coding
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Principle of Baseline JPEG

FDCT Quantizer Entropy Encoder

Encoder

table
specifications

table
specifications

8 x 8 blocks

source image
data

compressed
image data

(Source: Gibson et al., Digital Compression for Multimedia, Morgan Kaufmann 98)

• partition image into 8 x 8 blocks, left-to-right, top-to-bottom

• compute Discrete Cosine Transform (DCT) of each block

• quantize coefficients according to psychovisual quantization tables

• order DCT coefficients in zigzag order

• perform runlength coding of bitstream of all coefficients of a block

• perform Huffman coding for symbols formed by bit patterns of a block 
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Illustrations for Baseline JPEG

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

a0
a1

a2

a3

a63

DCT coefficient ordering for
efficient runlength coding

0
1
•
•
•
62
63

7  6       •••         1  0

1
2

•••DCT
coefficients

MSB               LSB

blocks

transmission sequence
for blocks of image

partitioning the image into blocks
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JPEG-compressed Image

original
5.8 MB

JPEG-compressed
450 KB

difference image
standard deviation of

luminance differences: 1,44
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Problems with Block Structure of
JPEG

JPEC encoding with
compression ratio 1:70

block boundaries are visible
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Progressive Encoding

Progressive encoding allows to first transmit a coarse version of the
image which is then progressively refined (convenient for browsing
applications).

Spectral selection
1. transmission: DCT coefficients a0 ... ak1
2. transmission: DCT coefficients ak1 ... ak2
•
•
•

low frequency
coefficients first

Successive approximation
1. transmission: bits 7 ... n1 
2. transmission: bits n1+1 ... n2
•
•
•

most significant
bits first
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MPEG Compression

Original goal: 
Compress a 120 Mbps video stream to be handled by a CD with 1 Mbps.

Basic procedure:

• temporal prediction to exploit redundancy between image frames

• frequency domain decomposition using the DCT

• selective reduction of precision by quantization

• variable length coding to exploit statistical redundancy

• additional special techniques to maximize efficiency

Motion compensation:
16 x 16 blocks luminance with 8 x 8 blocks chromaticity of the current
image frame are transmitted in terms of
- an offset to the best-fitting block in a reference frame (motion vector)
- the compressed differences between the current and the reference block
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Quadtree Image Representation

Properties of quadtree:

• every node represents a squared image area, e.g. by its mean greyvalue
• every node has 4 children except leaf nodes
• children of a node represent the 4 subsquares of the parent node
• nodes can be refined if necessary

0

2 3

11
100 101

102 103

12 13

quadtree structure:

0 1 2 3

10 11 12 13

100 101 102 103

root
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Quadtree Image Compression

A complete quadtree represents an image of N = 2Kx 2K pixels with
1 + 4 + 16 + ... + 22K nodes ≈≈≈≈ 1.33 N nodes.

An image may be compressed by

- storing at every child node the greyvalue difference between child
and parent node

- omitting subtrees with equal greyvalues

Quadtree image compression supports progressive image transmission:

• images are transmitted by increasing quadtree levels, i.e. images are
progressively refined

• intermediate image representations provide useful information, e.g. for
image retrieval


