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Motion Analysis

Motion detection
Register locations in an image sequence which have change due to motion

Moving object detection and tracking
Detect individual moving objects, determine and predict object trajectories,
track objects with a moving camera

Derivation of 3D object properties
Determine 3D object shape from multiple views ("shape from motion")

Motion analysis of digital images is based on a temporal sequence of
image frames of a coherent scene.

"sparse sequence"    => few frames, temporally spaced apart,
considerable differences between frames

"dense sequence"      => many frames, incremental time steps,
incremental differences between frames

video          => 50 half frames per sec, interleaving,
line-by-line sampling
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Case Distinctions for Motion Analysis
stationary observer
moving observer

single moving object
multiple moving objects

rigid objects
jointed objects
deformable objects

perspective projection
weakly perspective projection
orthographic projection

rotation only
translation only
unrestricted motion

2 image analysis
multiple image analysis

incremental motion
large-scale motion

B/W images
colour images

xray images
IR images
natural images

noisy data
ideal data

monocular images
stereo images

dense flow
sparse flow
no flow
paralaxis

quatitative motion
qualitative motion

small objects
extended objects

polyeder
smooth objects
arbitrary objects

matte surfaces
specular surfaces
textured surfaces
arbitrary surfaces

without occlusion
with occlusion

uncalibrated camera
calibrated camera

data-driven
expectation-driven

real-time
no real-time

parallel computation
sequential computation

Many motion analysis methods are only applicable in restricted cases! 
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Motion in Video Images

TV

moving object TV halfframes

TV-rate sampling affects images of moving objects:
- contours show saw-tooth pattern 
- deformed angles
- limited resolution

Example: - 512 pixels per row
- length of dark car is ca. 3.5 m ≈≈≈≈ 130 pixel

- speed is ca. 50 km/h ≈≈≈≈ 14 m/s

- displacement between halfframes is ca.
10 pixels
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Difference Images
An obvious technique for motion detection is based on difference images:

• take the pixelwise difference of images of a sequence

• threshold the magnitude of the differences

• regions above threshold may be due to motion

Examples:

frame1 frame12 difference 
frame2 - frame1

threshold 30 

difference 
frame12 - frame1

threshold 30 

difference 
frame34 - frame1

threshold 30 

difference 
frame34 - frame1
without threshold

Note the effects prohibit reliable motion detection:

- phase jitter between frames (pixels do not correspond exactly)
- spurious motion of branches, pedestrians, dogs, etc.
- motion of uniform brightness regions does not show
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Counting Differences
If the goal is to isolate the images of moving objects, it may be useful to

• count how often a pixel differs from its initial value (first-order
difference picture FODP)

• count how often a  pixel of a FODP region differs from its previous
value (second-order difference picture SODP)

(R. Jain 76)

frame1 difference 
frame4 - frame1
FODP (yellow)

SODP (red)

difference 
frame10 - frame1

FODP (yellow)
SODP (red)

difference 
frame30 - frame1

FODP (yellow)
SODP (red)

The problem of uniform brightness regions is not really overcome. 
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Corresponding Interest Points

Detection of moving objects by
- finding "interest points" in all frames of a sequence
- determining the correspondence of interest points in different frames
- chaining correspondences over time
- grouping interest points into object candidates

Example: Tracking interest points of a taxi turning off Schlüterstraße 
(Dreschler and Nagel 82) 



7

Moravec Interest Operator
Interest points (feature points) are image locations  where an interest
operator computes a high value. Interest operators measure properties of a
local pixel neighbourhood.

Moravec interest operator: ij

This simple operator measures the distinctness of a point w.r.t. its surround.

Refinement of Moravec operator:

Determine locations with strong
brightness variations along two
orthogonal directions (e.g. based
on variances in horizontal,
vertical and diagonal direction).

Interest points in different frames may not correspond to identical
physical object parts due to their small neighbourhood and noise.

 
M(i, j) ==

1
8

|g(m,n) −− g(i, j)|
n== j−−1

j++1

∑∑
m==i−−1

i++1

∑∑
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Corner Models
Interest points may be based on
models of interesting facets of
the image function, e.g. corners.

"corner" = location with extremal
Gaussian curvatures
(Dreschler and Nagel 81)

Zuniga-Haralick operator:

• fit a cubic polynomial  
f(i,j) = c1 + c2x + c3y + c4x2 + c5xy + c6y2 + c7x3 + c8x2y + c9xy2 + c10y3

For a 5x5 neighbourhood the coefficients of the best-fitting polynomial can
be directly determined from the 25 greyvalues

• compute interest value from polynomial coefficients  

ZH(i, j) ==
−−2(c2

2c6 −− c2c3c5 −− c3
2c4 )

c2
2 ++ c3

2( )
3
2

measure of "cornerness" of the polynomial
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Correspondence problem

Difficulties:

• scene may not offer enough structure to uniquely locate points

• scene may offer too much structure to uniquely locate points

• geometric features may differ strongly between frames

• photometric features differ strongly between frames

• there may be no corresponding point because of occlusion

Note that these difficulties apply to single-camera motion analysis as
well as multiple-camera 3D analysis (e.g. binocular stereo).

The correspondence problem is to determine which interest points in
different frames of a sequence mark the same physical part of a scene.
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Correspondence by Iterative Relaxation

Basic scheme (Thompson and Barnard 81) modified by Dreschler and Nagel:

• initialize correspondence confidences between all pairs of interest points
in 2 frames based on

-  similarity of greyvalue neighbourhoods
-  plausibility of distance (velocity)

• modify confidences iteratively based on

-  similarity of displacement vectors in the neighbourhood
-  confidence of competing displacement vectors

initialized confidences confidences after 10 iterationsinterest points of 2 frames
(red and blue)
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Kalman Filters (1)

A Kalman filter provides an iterative scheme for (i) predicting an event and
(ii) incorporating new measurements.

prediction measurement

Assume a linear system with observations depending linearly on the
system state, and white Gaussian noise disturbing the system evolution
and the observations:

xk+1 = Akxk + wk

zk = Hkxk + vk

xk quantity of interest ("state") at time k
Ak model for evolution of xk

wk zero mean Gaussian noise with
covariance Qk

zk observations at time k
Hk relation of observations to state
vk zero mean Gaussian noise with

covariance Rk

Often, Ak, Qk, Hk and Rk are constant.

What is the best estimate of xk
based on the previous estimate
xk-1 and the observation zk?
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Kalman Filters (2)
The best a priori estimate of xk before observing zk is

xk´ = Ak-1xk-1

After observing zk, the a priori estimate is updated by

xk´´ =  xk´ + Kk(zk - Hkxk´ )

Kk is Kalman gain matrix. Kk is determined to minimize the a posteriori
variance Pk´´ of the error xk - xk´´. The minimizing Kk is

Kk = Pk´Hk
T (HkPk´Hk

T + Rk)-1

with  Pk´ = AkPk-1´´Ak
T + Qk-1 and  Pk´´= (I - KkHk) Pk´

Pk´ is covariance of error xk - xk´ before observation of zk.

Iterative order of computations:

(1)  xk´ = Ak-1xk-1´´ 

(2)  Pk´ = AkPk-1´´Ak
T + Qk-1

(1)  Kk = Pk´Hk
T (HkPk´Hk

T + Rk)-1

(2)  xk´´ =  xk´ + Kk(zk - Hkxk´ )

(3)  Pk´´= (I - KkHk) Pk´

x1´ 

P1´ 

initialization
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Kalman Filter Example
Track positions pk and velocities vk of an object moving along a straight line.
Assume unknown accelerations ak with probability density N(0, q2) and
measurements of positions pk corrupted by white noise bk with probability
density N(0, r2).

xk+1 = Akxk + wk

zk = Hkxk + vk

pk+1     = 1    T pk     +   T2/2   ak
vk+1         0    1 vk            T

T is time
increment

zk = pk + bkzk     =   1     0     pk     +    bk
0            0    0     vk            0

P0´=   0    0
          0    0

initialization   (here: position and velocity 
          values are known with certainty)

x0´ =    p0
           v0

K0 =   0    0
          0    0

x0´´=   p0
           v0

P0´´=   0    0
            0   0

x1´ =    1    T    p0    =   p0 + v0T
            0    1    v0              v0

K1 =    q2      1    0
         q2+ r2   0    0

x1´´=   p0 + v0T  +   q2      z1 - (p0 + v0T)
                v0              q2+ r2              0

P1´´=   q2    1    0
        q2+ 1  0    0

P1´= q2  1   0
              0   0
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Diagrams for Kalman Filter Example (1)
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Diagrams for Kalman Filter Example (2)

-20

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

p
p ´
z
p ´ ´

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

v
v ´
v ´ ´

positions

velocities

T = 1 time step

q = 2 standard deviation of
acceleration bursts

r = 20 standard deviation of
position sensor

p0 = 0 initial position

v0 = 0 initial velocity

The standard deviation of the
estimated position p is  around
15 before observing  z and
around 12 after observing z.



16

Optical Flow Constraint Equation
Optical flow is the displacement field of surface elements of a scene during
an incremental time interval dt ("velocity field").

Assumptions:
• Observed brightness is constant over time (no illumination changes)
• Nearby image points move similarly (velocity smoothness constraint) 

For a continuous image g(x, y, t) a linear Taylor series approximation gives

g(x+dx, y+dy, t+dt) ≈≈≈≈ g(x, y, t) + gxdx + gydy + gtdt

For motion without illumination change we have

g(x+dx, y+dy, t+dt) = g(x, y, t)

Hence gxdx/dt + gydy/dt = gxu + gyv = -gt        u, v velocity components
 

gxu + gyv = -gt optical flow constraint equation

gx ≈≈≈≈ ∆∆∆∆g/∆∆∆∆x,  gy ≈≈≈≈ ∆∆∆∆g/∆∆∆∆y,  gt ≈≈≈≈ ∆∆∆∆g/∆∆∆∆t  may be estimated from the spatial and
temporal surround of a location (x, y), hence the optical flow constraint
equation provides one equation for the two unknowns u and v.
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Aperture Effect

The optical flow constraint allows for ambiguous motion interpretations.
This can be illustrated by the aperture effect.

In which direction has the edge moved?

Compare with the barber pole effect:

Due to the linear approximation of the image function, the velocity vector
cannot be determined uniquely from a local neighbourhood.
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Optical Flow Smoothness Constraint

For dynamic scenes one can often assume that the velocity field changes
smoothly in a spatial neighbourhood:

- large objects
- translational motion
- observer motion, distant objects

Hence, as an additional constraint, one can minimize a smoothness error:

One also wants to minimize the error in the optical flow constraint equation: 

es == ((ux
2∫∫∫∫ ++uy

2 ) ++ (vx
2 ++ vy

2 )) dx dy

ec == (gxu ++∫∫∫∫ gyv ++ gt )
2  dx dy

Using a Lagrange multiplier λλλλ, both constraints can be combined into an
error functional, to be minimized by the calculus of variations:

e == (gxu ++∫∫∫∫ gyv ++ gt )
2 + λλ(ux

2 ++uy
2 ++ vx

2 ++ vy
2 ) dx dy
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Optical Flow Algorithm
The solution for optical flow with smoothness constraint is given in terms
of a pair of partial differential equations:

u = u −− gx

gx u ++ gy v

λλ2 ++ gx
2 ++ gy

2 v = v −− gy

gx u ++ gy v

λλ2 ++ gx
2 ++ gy

2

The equations can be solved by a Gauss-Seidel iteration based on pairs of
consecutive images (Horn & Schunck 81).

1. Initialize velocity vectors c(i, j) for all (i, j) where cT = [u v]

2. Estimate gx, gy, gt for all (i, j) from the pair of consecutive images

3. For the k-th iteration, compute

Basic optical flow algorithm (Sonka et al. 98, pp. 687):

Qk−−1(i, j) ==
gx (i, j)u

k−−1
(i, j) ++ gy (i, j)v

k−−1
(i, j)

λλ2 ++ gx
2 (i, j) ++ gy

2 (i, j)

uk (i, j) = u
k−−1

(i, j) −− gx (i, j)Qk−−1(i, j)

vk (i, j) = v
k−−1

(i, j) −− gy (i, j)Qk−−1(i, j)
with

4. Repeat step 3 until the error e is below a threshold

ek == [gx (i, j)uk (i, j) ++ gy (i, j)vk (i, j) ++ gt (i, j)]2 ++
i
∑∑

i
∑∑

λλ[ux
k2

(i, j) ++uy
k 2

(i, j) ++ vx
k2

(i, j) ++ vy
k 2

(i, j) <  εε

λλλλ is a fixed value chosen
to balance the constraints

u and v denote mean velocity values 

based on the local neighbourhood
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Optical Flow Improvements

Several improvements of the Horn & Schunck optical flow computation
have been suggested. For example, Nagel (1983) introduced the "oriented
smoothness constraint" which does not enforce smoothness across edges.

(from Nagel and Enkelmann 86)

2 frames of the
taxi sequence

frame 11

frame 12

needle diagram of optical
flow for taxi motion with
isotropic smoothness
constraint after 30
iterations

the same with oriented
smoothness constraint



21

Optical Flow and Segmentation
The optical flow smoothness constraint is not valid at occluding boundaries
("silhouettes"). In order to inhibit the constraint, one may try to segment the
image based on optical flow discontinuities while performing the iterations.

Checkered sphere
rotating before

randomly textured
background

1. iteration 4. iteration 16. iteration

64. iteration final result ideal result

(From B.K.P. Horn, Robot Vision, 1986)
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Optical Flow Patterns

Complex optical flow fields may be segmented into components which
show a consistent qualitative pattern.

Qualitative flow patterns:

translation at
constant distance

translation
in depth

rotation at
constant distance

rotation about
axis parallel to

image plane

General translation results in a flow pattern with a focus of expansion (FOE):

•
FOE •

As the direction of motion changes, the FOE changes its location.
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Optical Flow and 3D Motion (1)

In general, optical flow may be caused by an unknown 3D motion of an
unkown surface.

How do the flow components u´, v´ depend on the 3D motion parameters?

Assume camera motion in a static scene, optical axis = z-axis, rotation about
the origin.

•
•

•

optical
center

optical 
axis

scene point r = x
y
z

z

y

x x´

y´

image plane
at f=1

3D velocity v

2D velocity v´

3D velocity v of a point r is determined by rotational velocity ωωωω and
translational velocity t:

v = -t - ωωωω x r

rotation
axis ωωωω
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Optical Flow and 3D Motion (2)

By taking the component form of  v = -t - ωωωω x r  with  tT = [tx, ty, tz], ωωωωT = [a, b, c]
and rT = [x y z] and computing the perspective projection we get

The translational and rotational parts may be separated:

Observation of u´and v´at location (x´, y´) gives 2 equations for 7 unknowns.
Note that motion of a point at distance kz with translation kt and the same
rotation ωωωω will give the same optical flow, k any scale factor.

u′′==
ẋ
z
−−

xż
z2 == −−

tx

z
−−b ++ c ′′y




−− ′′x −−

tz

z
−− a ′′y ++b ′′x





v ′′==
ẏ
z
−−

yż
z2 == −−

ty

z
−− c ′′x ++ a







 −− ′′y −−

tz

z
−− a ′′y ++b ′′x





u′′translation == −−
tx ++ ′′x tz

z
      u′′rotation = a ′′x ′′y - b( ′′x 2 ++1) ++ c ′′y

v ′′translation == −−
ty ++ ′′y tz

z
      v′′rotation = a( ′′y 2 +1) - b ′′x ′′y ++ c ′′x

For pure translation we have 2 equations for 3 unknows (z fixed arbitrarily).


