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3D Motion Analysis Based on
2D Point Displacements

2D displacements of points
observed on an unknown
moving rigid body may
provide information about

- the 3D structure of the points

- the 3D motion parameters

Cases of interest:

• stationary camera, moving object(s)

• moving camera, stationary object(s)

• moving camera, moving object(s)

camera motion
parameters may
be known

Rotating cylinder experiment
by S. Ullman (1981)
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Structure from Motion (1)

Ullman showed 1979 that the spatial structure of 4 rigidly connected
non-coplanar points may be recovered from 3 orthographic projections.

O, A, B, C 4 rigid points
a, b, c vectors to A, B, C

1, 2, 3 projection planes
xi, yi coordinate axes of i

ai, bi, ci coordinate pairs of points 
A, B, C in projection plane i

The problem is to determine the spatial orientations of 1, 2, 3 from the
9 projection coordinate pairs ai, bi, ci, i = 1, 2, 3.

•Ou12 u31

u23
The 3 projection planes intersect and form a tetrahedron.
u12, u23, u31 are unit vectors along the intersections.
The idea is to determine the uij from the observed
coordinates ai, bi, ci.
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Structure from Motion (2)
The projection coordinates are

a1x = aTx1 a1y = aTy1
b1x = bTx1 b1y = bTy1
c1x = cTx1 c1y = cTy1

Since each uij lies in both planes i and j, it can be written as

uij = ijxi + ijyi

uij = ijxj + ijyj ijxi + ijyi = ijxj + ijyj 

Multiplying with aT, bT and cT we get

ijaix + ijaiy = ijajx + ijajy  

ijbix + ijbiy = ijbjx + ijbjy  

ijcix + ijciy = ijcjx + ijcjy  

Exploiting the constraints ij
2 + ij

2 = 1 and ij
2 + ij

2 = 1, we can solve for
     ij, ij, ij, ij. 
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Structure from Motion (3)

From the coefficients ij, ij, ij, ij one
can compute the distances between the
3 unit vectors u12, u23, u31:

O

d1

d2d3

d1 = || u23 - u12 || = || ( 23 - 12)xi + ( 23 - 12)yi || = ( 23 - 12)2 + ( 23 - 12)2

d2 = ( 31 - 23)2 + ( 31 - 23)2

d3 = ( 12 - 31)2 + ( 12 - 31)2

Hence the relative angles of the projection planes are determined.

The spatial positions of A, B, C relative to the projection planes (and to
the origin O) can be determined by intersecting the projection rays
perpendicular on the  projected points ai, bi, ci.
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Perspective 3D Analysis of
Point Displacements

• relative motion of one rigid object and one camera
• observation of P points in M views

• v1m

• v2m

• v3m
For each point vp in 2 consecutive images we have:

vp,m+1 = Rm vpm + tm motion equation

vpm = pm vpm´ projection equation

For P points in M images we have

- 3MP unknown 3D point coordinates vpm

- 6(M-1) unkown motion parameters Rm and tm
- MP unknown projection parameters pm

- 3(M-1)P motion equations
- 3MP projection equations
- 1 arbitrary scaling parameter

# equations  # unknowns  =>                                     =>

• v1,m+1• v2,m+1

• v3,m+1

P 3 +
2

2M 3

M P

2 5
3 4
4 4
5 4

6

Essential Matrix
Geometrical constraints derived from 2 views of a point in motion

z

x

y

• vm • vm+1Rm

tm
•

• motion between image m and m+1
may be decomposed into

1) rotation Rm about origin of
coordinate system (= optical center)

2) translation tm

• observations are given by direction
vectors nm and nm+1 along projection
rays

Rmnm, tm and nm are coplanar: [tm x Rmnm]T nm+1 = 0

After some manipulation: nm
T Em nm+1 = 0             E = essential matrix

with Em = and Rm =

nm

nm+1

tmxr1 tmxr2 tmxr3

|

|
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|
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Solving for the Essential Matrix

nm
T Em nm+1 = 0 formally one equation for 9 unknowns eij

But: only 6 degrees of freedom 
(3 rotation angles, 3 translation components)

eij can only be determined up to a scale factor 

Basic solution approach:
• observe P points, alltogether in 2 views, P >> 8
• fix e11 arbitrarily
• solve an overconstrained system of equations for the other 8 unknown

coefficients eij

E may be written as E = S R-1 with R = rotation matrix and S =   0  -tz   ty
tz   0   -tx
-ty   tx  0

E may be decomposed into S and R by Singular Value Decomposition (SVD).

Note:  S (and therefore E) has rank 2
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Singular Value Decomposition of E

Any m x n matrix A, m  n, may be decomposed as A = U D VT  where
U    has orthonormal columns m x n
D    is non-negative diagonal n x n
VT  has orthonormal rows n x n

This can be applied to E to give E =  U D VT  with

R = U G VT   or   R = U GT VT

S = V Z VT

where G =     0   1   0 and Z =    0   -1  0
          -1   0   0    1   0   0
           0   0   1    0   0   0
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Nagel-Neumann Constraint

z

x

y

• vpm • vp,m+1Rm

tm
•

npm

np,m+1

Consider 2 views of 3 points vpm,
p = 1 ... 3, m = 1, 2

The planes through Rmnpm and
np,m+1 all intersect in tm

=> the normals of the planes are
coplanar

Coplanarity condition for 3 vectors a, b, c:     (a x b)T c = 0

( [Rmn1m x n1,m+1] x [Rmn2m x n2,m+1] )T [Rmn3m x n3,m+1] = 0

Nonlinear equation with 3 unknown rotation parameters.
=>  Observation of at least 5 points required to solve for the unknowns.
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Reminder: Homogeneous Coordinates

• (N+1)-dimensional notation for points in N-dimensional Euclidean space

• allows to express projection and translation as linear operations

Normal coordinates: vT = [x y z]

Homogeneous coordinates: vT = [wx wy wz w]
w  0 is arbitrary constant

Rotation and translation in homogeneous coordinates:

v´ = Av with      A = R    t
0    1

Projection in homogeneous coordinates:

v´ = Bv with      B = f   0  0
0  f   0
0  0  1

Divide the first N
components by the (N+1)rst
component to recover
normal coordinates
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From Homogeneous World Coordinates
to Homogeneous Image Coordinates

x, y, z = v  = scene coordinates
xp´´, yp´´ = vP = image coordinates

wxp´´ x x
wyp´´   =     K R    K t y = M y
w z z

1 1

K = fa fb xp0 intrinsic camera parameters
0 fc yp0 ("camera calibration matrix K")
0 0 1

R, t extrinsic camera parameters

M =  3 x 4 projective matrix

fa = scaling in xP-axis
fc = scaling in yP-axis
fb = slant of axes
xP0, yP0 = "principal point"
(optical center in image
plane)

vp = M v 
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Camera Calibration

Determine intrinsic and/or extrinsic camera parameters for a specific
camera-scene configuration. Prior calibration may be needed

- to measure unknown objects

- to navigate as a moving observer

- to perform stereo analysis

- to compensate for camera distortions

Important cases:

1. Known scene

Each image point corresponding with a known scene point provides
an equation vp = M v

2. Unknown scene

Several views are needed, differing by rotation and/or translation

a. Known camera motion

b.  Unknown camera motion ("camera self-calibration")
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Calibration of One Camera
from a Known Scene

• "known scene" = scene with prominent points, whose scene 
coordinates are known

• prominent points must be non-coplanar to avoid degeneracy

Projection equation vp = M v  provides 2 linear equations for unknown
coefficients of M:

xp (m31x + m32y + m33z + m34) = m11x + m12y + m13z + m14

yp (m31x + m32y + m33z + m34) = m21x + m22y + m23z + m24

Taking N points, N > 6, M can be estimated with a least-square
method from an overdetermined system of 2N linear equations.

From M =  [ KR  Kt ] = [ A b ], one gets K and R by Principle
Component Analysis (PCA) of A and t from t = K-1b.
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Fundamental Matrix

The fundamental matrix F generalizes the essential matrix E by incorporating
the intrinsic camera parameters of two (possibly different) cameras.

Essential matrix constraint for 2 views of a point:

nT E n´ = 0

From vp = K  n and vp´ = K´  n´ we get:

vp (K-1)T E (K´)-1 vp´ =  vp F vp´ = 0

Note that E and hence F have rank 2.

For each epipole of a 2-camera configuration we have eTF = 0 and Fe´= 0.

••C C´
e e´

K = fa fb xp0
0 fc yp0
0 0 1
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Epipolar Plane

••C C´e e´

•   v

vp vp´

The epipolar plane is spanned by
the projection rays of a point v and
the baseline CC´of a stereo
camera configuration.

The epipoles e and e´ are the intersection points of the baseline with the
image planes. The epipolar line l and l´ mark the intersections of the
epipolar plane in the left and right image, respectively.

Search for corresponding points in stereo images may be restricted to the
epipolar lines.

l l´

In a canonical stereo configuration (optical
axes parallel and perpendicular to baseline)
all epipolar lines are parallel:

•

•

C

C´

b
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Algebra of Epipolar Geometry

••C Re e´

•   v

vp vp´
l l´

b

Observation vp´ can be modelled
as a second observation after
translation b and rotation R of
the optical system.

Coplanarity of vp, b and vp´ (rotated back into coo-system at C) can be
expressed as

vp [ b x Rvp´] = 0 = vp [ b ] Rvp´ = vp E vp´ 

A vector product c x d can be written in matrix form:

c x d = cydz - czdy     = 0  -cz  cy       dx =  [ c ] d
czdx - cxdz cz  0  -cx           dy
cxdy - cydx -cy  cx  0       dz

essential matrix
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Correspondence Problem Revisited

For multiple-view 3D analysis it is essential to find corresponding
images of a scene point - the correspondence problem.

Difficulties:

• scene may not offer enough structure to uniquely locate points

• scene may offer too much structure to uniquely locate points

• geometric features may differ strongly between views

• there may be no corresponding point because of occlusion

• photometric features differ strongly between views

Note that difficulties apply to multiple-camera 3D analysis (e.g. binocular
stereo) as well as single-camera motion analysis.

18

Correspondence Between Two
Mars Images

Two images taken from two cameras of the Viking Lander I (1978).
Disparities change rapidly moving from the horizon to nearby structures.
(From B.K.P. Horn, Robot Vision, 1986)
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Constraining Search for Correspondence

The ambiguity of correspondence search may be reduced by several
(partly heuristic) constraints.
• Epipolar constraint

reduces search space from 2D to 1D

• Uniqueness constraint
a pixel in one image can correspond to only one pixel in another image

• Photometric similarity constraint
intensities of a point in different images may differ only a little

• Geometric similarity constraint
geometric features of a point in different images may differ only a little

• Disparity smoothness constraint
disparity varies only slowly almost everywhere in the image

• Physical origin constraint
points may correspond only if they mark the same physical location

• Disparity limit constraint
in humans disparity must be smaller than a limit to fuse images

• Ordering constraint
corresponding points lie in the same order on the epipolar line

• Mutual correspondence constraint
correspondence search must succeed irrespective of order of images
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Neural Stereo Computation

Neural-network inspired approach to stereo computation devised by
Marr and Poggio (1981)

• • • • • • • •

• •

disparity d

left image right image

•
•
•
•
•
•
• •
••• •

• •
•

•

possible
correspon-

dencesExploitation of 2 constraints:

• each point in the left image
corresponds only to one point
in the right image

• depth varies smoothly

Relaxation procedure:
Modify correspondence values c(x, y, d) interatively until values converge.

cn+ 1(x,y,d)= w1 cn
S 1

(  x ,  y ,  d ) w2 cn
S2

(  x ,  y ,  d )+ w0c0 (x,y,d)

S1 = { neighbours of (x, y) with d´= d }
S2 = { neighbours of (x, y) with |d´- d| = 1 and (x, y) = (x´, y´) }

1 2 3 4 1 2 3 4
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Obtaining 3D Shape from
Shading Information

From "Shape from Shading",
B.K.P. Horn and M.J. Brooks (eds.),
MIT Press 1989

Under certain
conditions, a 3D
surface model may
be reconstructed
from the greyvalue
variations of a
monocular image.
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Principle of Shape from Shading

Physical surface properties, surface orientation, illumination and viewing
direction determine the greyvalue of a surface patch in a sensor signal.

For a single object surface viewed in one image, greyvalue changes are
mainly caused by surface orientation changes.

The reconstruction of arbitrary surface shapes is not possible because
different surface orientations may give rise to identical greyvalues.

Surface shapes may be uniquely reconstructed from shading information if
possible surface shapes are constrained by smoothness assumptions.

See "Shape from Shading" (B.K.P. Horn, M.J. Brooks, eds.), MIT Press 1989

a: patch with known orientation
b, c: neighbouring patches with similar orientations
b´: radical different orientation may not be

neighbour of a

Principle of incremental procedure for surface shape reconstruction:

a
b

c
b´
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Photometric Surface Properties
surface
normal

viewing
direction

illumination
direction

i
v

x

y

i
v

i, v   polar (zenith) angles

 i, v   azimuth angles

In general, the ability of a surface to reflect light is given by the
Bi-directional Reflectance Distribution Function (BRDF) r:

E = irradiance of light source
received by the surface patch
L = radiance of surface patch

towards viewer

For many materials the reflectance properties are rotation invariant,
in this case the BRDF depends on i, v, , where  = i - v.  

L( v, v)r( i, i; v, v) = E( i, i)

24

Irradiance of Imaging Device

O

I

n

f

irradiance = light energy falling on unit patch of imaging sensor,
       sensor signal is proportional to irradiance

lens with
aperture d

surface patch
produces radiance L

sensor patch
receives irradiance E

  
E = L

4
d
f

 

 
 

 

 
 

2

cos4 sensor signal depends on span-off angle 
of surface element ("vignetting")

off-center pixels in wide-angle images are darker
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Lambertian Surfaces
A Lambertian surface is an ideally matte surface which looks equally
bright from all viewing directions under uniform or collimated
illumination. Its brightness is proportional to the cosine of the
illumination angle.

• surface receives energy per unit area   cos i

• surface reflects energy   cos v due to matte reflectance properties

• sensor element receives energy from surface area   1/cos v

surface unit area

sensor element

uniform
light source

i v

"albedo" =  proportion of incident energy reflected back into
                     half space  above surface

rLambert( i, v, ) = ( )/

( ) =
L

Ei

cancel
out
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Surface Gradients

For 3D reconstruction of surfaces, it is useful to represent reflectance
properties as a function of surface orientation.

x

z
z(x, y) surface
p = z/ x x-component of surface gradient
q = z/ y y-component of surface gradient

1
0
p

tangent
vector in x
direction

0
1
q

tangent
vector in y
direction

-p
-q
1

vector in
surface
normal
direction

-p
-q
1

surface
normal
vector

If the z-axis is chosen to coincide with the viewer direction, we have 

The dependency of the BRDF on i, v and   may be expressed in terms
of p and q (with pi and qi for the light source direction).

  

n =
1

1+ p2 + q2

  

cos v =
1

1+ p2 + q2

  

cos i =
1+ pip + qiq

1+ p2 + q2 1+ pi
2 + qi

2

  

cos =
1

1+ pi
2 + qi

2
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Simplified Image Irradiance Equation

• the object has uniform reflecting properties,

• the light sources are distant so that the irradiation is approximately
constant and equally oriented,

• the viewer is distant so that the received radiance does not depend
on the distance but only on the orientation towards the surface.

With these simplifications the sensor greyvalues depend only on the
surface gradient components p and q.

  
E(x,y) = R(p(x, y),q(x,y)) =R(

z

x
,

z

y
)

"Simplified Image Irradiance Equation"

R(p, q) is the reflectance function for a particular illumination geometry.
E(x, y) is the sensor greyvalue measured at (x, y). Based on this
equation and a smoothness constraint, shape-from-shading methods
recover surface orientations.

Assume that

28

Reflectance Maps

R(p, q) may be plotted as a reflectance map with iso-brightness contours.

Reflectance map for
Lambertian surface

illuminated from
pi = 0.7 and qi = 0.3

p

q

p

q

Reflectance map for
matte surface with

specular component
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Characteristic Strip Method
Given a surface point (x, y, z) with known height z, orientation p and q, and
second derivatives r = zxx, s = zxy = zyx, t = zyy, the height z+ z and orientation
p+ p, q+ q in a neighbourhood x+ x, y+ y can be calculated from the image
irradiance equation E(x, y) = R(p, q).

Infinitesimal change of height:

z = p x + q y

Changes of p and q for a step x, y:

p = r x + s y    q = s x + t y

Differentiation of image irradiance equation w.r.t. x and y gives

Ex = r Rp + s Rq   Ey = s Rp + t Rq

Choose a step  in the direction of steepest surface descent  ("characteristic strip"):

x = Rp     y = Rq 

For this direction the image irradiance equation can be replaced by

x/  = Rp    y/  = Rq    z/  = p Rp+ q Rq   p/  = Ex    q/  = Ey    

Boundary conditions and initial points may be given by
-  occluding contours with surface normal perpendicular to viewing direction
-  singular points with surface normal towards light source.

30

Shape from Shading
by Global Optimization

Given a monocular image and a known image irradiance equation, surface
orientations are ambiguously constrained. Disambiguation may be
achieved by optimizing a global smoothness criterion.

Minimize
  
D(x, y) = E(x,y) R(p,q)[ ]

2

+
2
p( )

2

+
2
q( )

2 

 

 

 

violation of reflectance
constraint

violation of smoothness
constraint

Lagrange multiplier

There exist standard techniques for solving this minimization problem
iteratively. In general, the solution may not be unique.

Due to several uncertain assumptions (illumination, reflectance function,
smoothness of surface) solutions may not be reliable.
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Principle of Photometric Stereo

From "Shape from Shading",
B.K.P. Horn and M.J. Brooks (eds.),
MIT Press 1989

In photometric stereo, several images with different known light source
orientations are used to uniquely recover 3D orientation of a surface with
known reflectance.

• The reflectance maps R1(p, q),
R2(p, q), R3(p, q) specify the
possible surface orientations of
each pixel in terms of iso-
brightness contours
("isophotes").

• The intersection of the isophotes
corresponding to the 3
brightness values measured for
a pixel (x, y) uniquely determines
the surface orientation (p(x, y),
q(x, y)).

32

Analytical Solution for
Photometric Stereo

 i1T
.
.
.
 iKT

For a Lambertian surface:
E(x, y) = R(p, q) =  cos( i) =  iTn
i = light source direction,  n = surface normal,   = constant

If K images are taken with K different light sources ik, k = 1 ... K, there are K
brightness measurements Ek for each image position (x, y):

Ek(x, y) =  ikT n

In matrix notation:
E(x, y) =  L n where L =

For K=3,  L may be inverted, hence

In general, the pseudo-inverse must be 
computed:

  

n(x,y) =
L 1E(x,y)

L 1E(x,y)

  

n(x,y) =
L

T
L( )

1

L
T
E(x,y)

L
T
L( )

1

L
T
E(x,y)


