## **Probabilistic Models for Occurrences**

Modelling probabilistic dependencies (causalities) and independencies between discrete events of a scene

- X<sub>i</sub> random variable *models uncertain propositions about a scene*
- X<sub>i</sub> = a hypothesis

**Decomposition of joint probabilities:** 

 $\mathsf{P}(\mathsf{X}_{1}, \mathsf{X}_{2}, \mathsf{X}_{3}, \dots, \mathsf{X}_{\mathsf{N}}) = \mathsf{P}(\mathsf{X}_{1} | \mathsf{X}_{2}, \mathsf{X}_{3}, \dots, \mathsf{X}_{\mathsf{N}}) \cdot \mathsf{P}(\mathsf{X}_{2} | \mathsf{X}_{3}, \mathsf{X}_{4}, \dots, \mathsf{X}_{\mathsf{N}}) \cdot \dots \cdot \mathsf{P}(\mathsf{X}_{\mathsf{N-1}} | \mathsf{X}_{\mathsf{N}}) \cdot \mathsf{P}(\mathsf{X}_{\mathsf{N}})$ 

Simplification in the case of statistical independence:

X independent of X<sub>i</sub>

 $\mathsf{P}(\mathsf{X} | \mathsf{X}_{1}, \dots, \mathsf{X}_{i-1}, \mathsf{X}_{i}, \mathsf{X}_{i+1}, \dots, \mathsf{X}_{\mathsf{N}}) = \mathsf{P}(\mathsf{X} | \mathsf{X}_{1}, \dots, \mathsf{X}_{i-1}, \mathsf{X}_{i+1}, \dots, \mathsf{X}_{\mathsf{N}})$ 

Joint probability of N variables may be simplified by ordering the variables according to their direct dependence (causality).

Note notation:  $P(X_1, ..., X_N) = ...$  means  $\forall x_1 ... \forall x_N P(X_1 = x_1, ..., X_N = x_N) = ...$ 

## **Independence Causes Complexity Reduction**

Assume that all random variables  $X_n$  of the JPD  $P(X_1, X_2, X_3, ..., X_N)$  have a domain size K. Then a fully general JPD requires  $K^N$  entries.

Example: N = 20,  $K = 10 \implies 10^{20}$  entries must be specified!

If all random variables are statistically independent, we have  $P(X_1, X_2, X_3, ..., X_N) = P(X_1) \cdot P(X_2) \cdot ... \cdot P(X_N)$  and only KN entries are required.

Exploiting independencies can greatly reduce the size of a probability table!

## **Conditional Independence**

It is useful to determine direct influences  $Y_i$  on a random variable X, because given the  $Y_i$ , X is independent of other Variables  $Z_k$  "upstream" to the  $Y_i$ .

Let dom(X) be the domain of X, i.e. the set of possible values of X.

A random variable X is independent of Z given Y if for all  $x_i \in dom(X)$ , for all  $y_i \in dom(Y)$ , and for all  $z_k \in dom(Z)$ ,

 $P(X=x_i | Y=y_i, Z=z_k) = P(X=x_i | Y=y_i)$ 

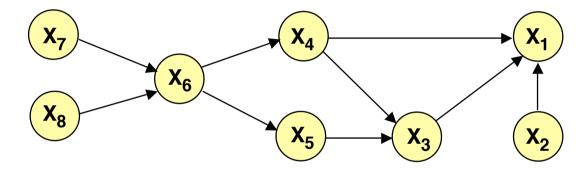
Example: X=plate\_on\_table, Y=laying\_table, Z=want\_to\_eat

| ΧΥΖ | P(XYZ) | ΧYΖ | P(XYZ) | Check whether X is |
|-----|--------|-----|--------|--------------------|
| ттт | .096   | FTT | .024   | independent of Z   |
| TTF | .064   | FTF | .016   | given Y!           |
| TFT | .0     | FFT | .08    |                    |
| TFF | .0     | FFF | .72    |                    |

# **Causality Graph**

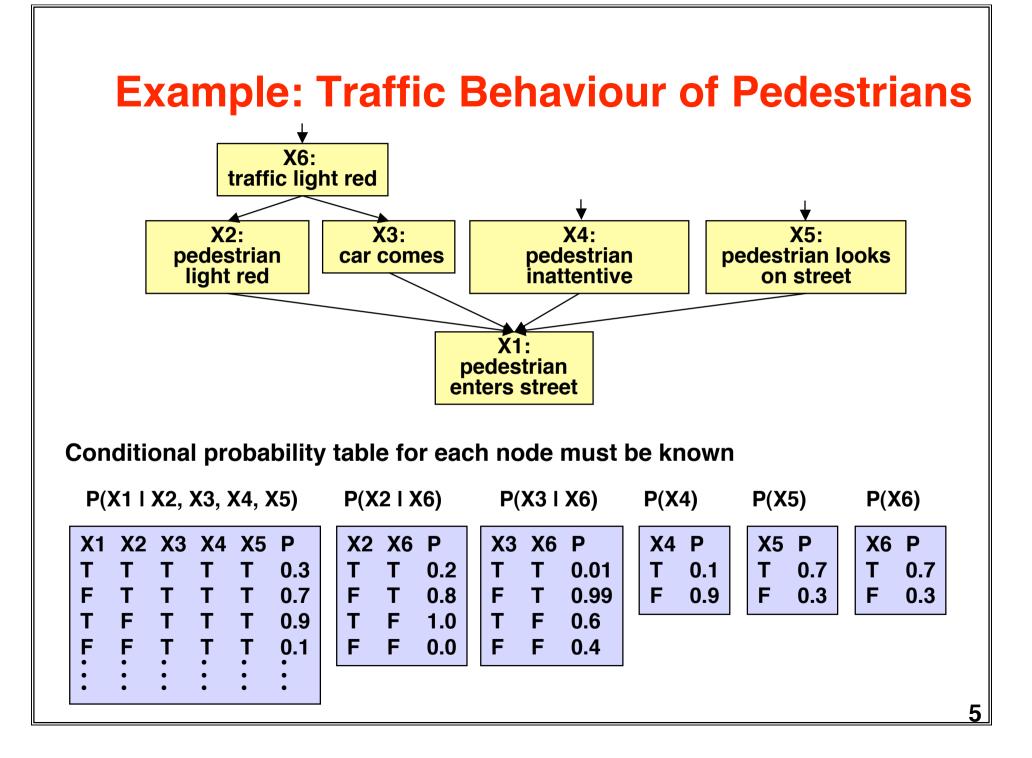
Conditional dependencies (causality relations) of random variables define partial order.

Representation as a directed acyclic graph (DAG):



 $P(X_1, X_2, X_3, ..., X_8) = P(X_1 | X_2, X_3, X_4) \cdot P(X_2) \cdot P(X_3 | X_4, X_5) \cdot P(X_4 | X_6) \cdot P(X_5 | X_6) \cdot P(X_6 | X_7 X_8) \cdot P(X_7) \cdot P(X_8)$ 

For any DAG, we obtain the JPD as follows:  $Pa(X_i)$  parents of node  $X_i$  $P(X_1 ... X_N) = \prod_i P(X_i | Pa(X_i))$ 

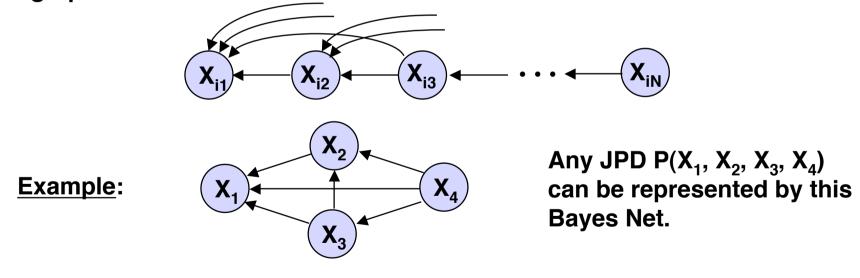


### **Bayes Nets are not Unique**

Using the chain rule, a JPD  $P(X_1, X_2, ..., X_N)$  may be expanded in N! ways:

$$P(X_{1}, X_{2}, ..., X_{N}) = P(X_{i1} | X_{i2}, ..., X_{iN}) \cdot P(X_{i2} | X_{i3}, ..., X_{iN}) \cdot ... \cdot P(X_{iN})$$

Even with no independencies, each chain rule expansion can be drawn as a graphical model:



For efficient inferences with a given JPD, it is important to find a Bayes Net with a low number of dependencies.

# **Constructing a Bayes Net**

By domain analysis:

- 1. Select discrete variables X<sub>i</sub> relevant for domain
- 2. Establish partial order of variables according to causality
- 3. In the order of decreasing causality:
  - (i) Generate node X<sub>i</sub> in net
  - (ii) As predecessors of X<sub>i</sub> choose the smallest subset of nodes which are already in the net and from which X<sub>i</sub> is causally dependent
  - (iii) Determine a table of conditional probabilities for X<sub>i</sub>

### By data analysis:

Use a learning method to establish a Bayes Net approximating the empirical joint probablity distribution.

## **Computing Inferences**

We want to use a Bayes Net for probabilistic inferences of the following kind:

Given a joint probability  $P(X_1, ..., X_N)$  represented by a Bayes Net, and evidence  $X_{m_1} = a_{m_1}, ..., X_{m_K} = a_{m_K}$  for some of the variables, what is the probability  $P(X_n = a_i | X_{m_1} = a_{m_1}, ..., X_{m_K} = a_{m_K})$  of an unobserved variable to take on a value  $a_i$ ?

In general this requires

- expressing a conditional probability by a quotient of joint probabilities

$$P(X_{n}=a_{i} | X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}}) = \frac{P(X_{n}=a_{i}, X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}{P(X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}$$

- determining partial joint probabilities from the given total joint probability by summing out unwanted variables

$$P(X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K}) = \sum_{X_{n_1}, ..., X_{n_K}} P(X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K}, X_{n_1}, ..., X_{n_K})$$

### **Normalization**

Basic formula for computing the probability of a query variable  $X_n$  from a JPD P( $X_1, ..., X_N$ ) given evidence  $X_{m_1} = a_{m_1}, ..., X_{m_K} = a_{m_K}$ :

$$P(X_{n}=a_{i} | X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}}) = \frac{P(X_{n}=a_{i}, X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}{P(X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}$$

The denominator on the right is independent of  $a_i$  and constitutes a normalizing factor  $\alpha$ . It can be computed by requiring that the conditional probabilities of all  $a_i$  sum to unity.

$$P(X_{n} = a_{i} | X_{m_{1}} = a_{m_{1}}, ..., X_{m_{K}} = a_{m_{K}}) = \alpha \{ P(X_{n} = a_{i}, X_{m_{1}} = a_{m_{1}}, ..., X_{m_{K}} = a_{m_{K}}) \}$$

Formulae are often written in this simplified form with  $\alpha$  as a normalizing factor.

## **Factoring the JPD**

JPDs can be computed from a Bayes Net more efficiently by ordering the "factors" so that only few summations and products must be computed.

Example:  $\left( X_{6} \right)$ Compute  $P(X_2=a, X_4=b | X_1=c, X_7=d)$  $X_2$ **X**<sub>5</sub> X<sub>3</sub>  $P(X_2=a, X_4=b \mid X_1=c, X_7=d) = \frac{P(X_2=a, X_4=b, X_1=c, X_7=d)}{P(X_1=c, X_7=d)}$  $P(X_{2}=a, X_{4}=b, X_{1}=c, X_{7}=d) = \sum_{X_{3}} \sum_{X_{5}} \sum_{X_{6}} \sum_{X_{8}} P(X_{1}=c, X_{2}=a, X_{3}, X_{4}=b, X_{5}, X_{6}, X_{7}=d, X_{8})$  $= \sum_{X_3} \sum_{X_5} \sum_{X_6} \sum_{X_8} P(X_1 = c \mid X_2 = a, X_3, X_4 = b) \cdot P(X_2 = a) \cdot P(X_3 \mid X_4 = b, X_5) \cdot P(X_4 = b \mid X_6) \cdot P(X_5 \mid X_6) \cdot P(X_6 \mid X_7 = d, X_8) \cdot P(X_7 = d) \cdot P(X_8)$ one possible  $= P(X_2=a) \cdot P(X_7=d) \cdot \sum_{X_3} P(X_1=c \mid X_2=a, X_3, X_4=b) \cdot \sum_{X_5} P(X_3 \mid X_4=b, X_5) \cdot$ order for efficient  $\cdot \sum_{X_6} P(X_4 = b|X_6) \cdot P(X_5 |X_6) \cdot \sum_{X_6} P(X_6 |X_7 = d, X_8) \cdot P(X_8)$ computation 10

# **Set-factoring Heuristic**

Finding the <u>best</u> possible order for computing factors of a JPD is not tractable, in general. The set-factoring heuristic is a greedy (suboptimal) algorithm with often excellent results.

Given  $\chi$  set of random variables to be summed out

 $\ensuremath{\mathcal{F}}$  set of factors to be combined

#### Set-factoring heuristic:

- Pick the pair of factors which produces the smallest probability table after combination and summing out as many variables of X as possible.
   Break ties by choosing the pair where most variables are summed out.
- Place resulting factor into set  $\mathcal{F}$ , remove summed-out variables from  $\mathcal{X}$  and repeat procedure.

### **Example for Set-factoring Heuristic (1)**

#### Compute

$$P(X_{2}=a, X_{4}=b, X_{1}=c, X_{7}=d) = \sum_{X_{3}} \sum_{X_{5}} \sum_{X_{6}} \sum_{X_{8}} P(X_{1}=c|X_{2}=a, X_{3}, X_{4}=b) \cdot P(X_{2}=a) \cdot P(X_{3}|X_{4}=b, X_{5}) \cdot P(X_{4}=b|X_{6}) \cdot P(X_{5}|X_{6}) \cdot P(X_{6}|X_{7}=d, X_{8}) \cdot P(X_{7}=d) \cdot P(X_{8})$$

Step 1: 
$$X = \{X_3, X_5, X_6, X_8\}$$
  
 $\mathcal{F} = \{P(X_1=c|X_2=a,X_3,X_4=b), P(X_2=a), P(X_3|X_4=b,X_5), P(X_4=b|X_6), P(X_5|X_6), P(X_6|X_7=d,X_8), P(X_7=d), P(X_8)\}$ 

After extracting the constant factors  $P(X_2=a)$  and  $P(X_7=d)$ , 6 factors remain, hence 15 possible pairs may be formed. Assuming equally sized domains, the set-factoring heuristic prefers 2 combinations:

- (i)  $P(X_1=c|X_2=a,X_3,X_4=b) \cdot P(X_3|X_4=b,X_5)$  and summing out  $X_3$
- (ii)  $P(X_6 | X_7 = d, X_8) \cdot P(X_8)$  and summing out  $X_8$

Choosing (ii), the new factor  $P(X_6 | X_7 = d)$  is computed and the sets are updated:

Step 2:  $X = \{X_3, X_5, X_6\}$  $\mathcal{T} = \{P(X_1=c|X_2=a,X_3,X_4=b), P(X_3|X_4=b,X_5), P(X_4=b|X_6), P(X_5|X_6), P(X_6|X_7=d)\}$ 

## **Example for Set-factoring Heuristic (2)**

The set-factoring heuristic prefers the combination:

 $P(X_1=c|X_2=a,X_3,X_4=b) \cdot P(X_3|X_4=b,X_5)$  and summing out  $X_3$ 

The new factor  $P(X_1=c|X_2=a,X_4=b,X_5)$  is computed and the sets are updated:

**<u>Step 3</u>**:  $X = \{X_5, X_6\}$ 

 $\mathcal{F} = \{ \mathsf{P}(\mathsf{X}_1 = \mathsf{cl} \ \mathsf{X}_2 = \mathsf{a}, \mathsf{X}_4 = \mathsf{b}, \mathsf{X}_5), \ \mathsf{P}(\mathsf{X}_4 = \mathsf{bl} \ \mathsf{X}_6), \ \mathsf{P}(\mathsf{X}_5 | \ \mathsf{X}_6), \ \mathsf{P}(\mathsf{X}_6 | \ \mathsf{X}_7 = \mathsf{d}) \}$ 

The set-factoring heuristic prefers the combination:

 $P(X_1=c|X_2=a,X_4=b,X_5) \cdot P(X_5|X_6)$  and summing out  $X_5$ 

The new factor  $P(X_1=c|X_2=a,X_4=b,X_6)$  is computed and the sets are updated:

**Step 4:**  $X = \{X_6\}$  $\mathcal{F} = \{P(X_1 = c| X_2 = a, X_4 = b, X_6), P(X_4 = b| X_6), P(X_6| X_7 = d)\}$ 

The set-factoring heuristic ranks all combinations equal. Choosing

 $P(X_4=b|X_6) \cdot P(X_6|X_7=d)$ 

we get the new factor  $P(X_4=b,X_6|X_7=d)$  and the updated sets:

**<u>Step 5</u>**:  $X = \{X_6\}$  $\mathcal{F} = \{P(X_1 = c| X_2 = a, X_4 = b, X_6), P(X_4 = b, X_6| X_7 = d)\}$ 

### **Example for Set-factoring Heuristic (3)**

The final result follows from reassembling the summations outwards:

$$P(X_{2}=a, X_{4}=b, X_{1}=c, X_{7}=d) = P(X_{2}=a) \cdot P(X_{7}=d) \\ \cdot \sum_{X_{6}} P(X_{4}=b| X_{6}) \cdot P(X_{6}| X_{7}=d) \\ \cdot \sum_{X_{5}} P(X_{5}| X_{6}) \\ \cdot \sum_{X_{5}} P(X_{1}=c | X_{2}=a, X_{3}, X_{4}=b) \cdot P(X_{3}| X_{4}=b, X_{5}) \\ \cdot \sum_{X_{3}} P(X_{6}| X_{7}=d, X_{8}) \cdot P(X_{8})$$

If D is the size of the domains of the random variables, the number of multiplications is

$$N_{mult} = D^2 + D^2 + D^2 + D$$

This is the same as the number of multiplications for the manual ordering proposed earlier:

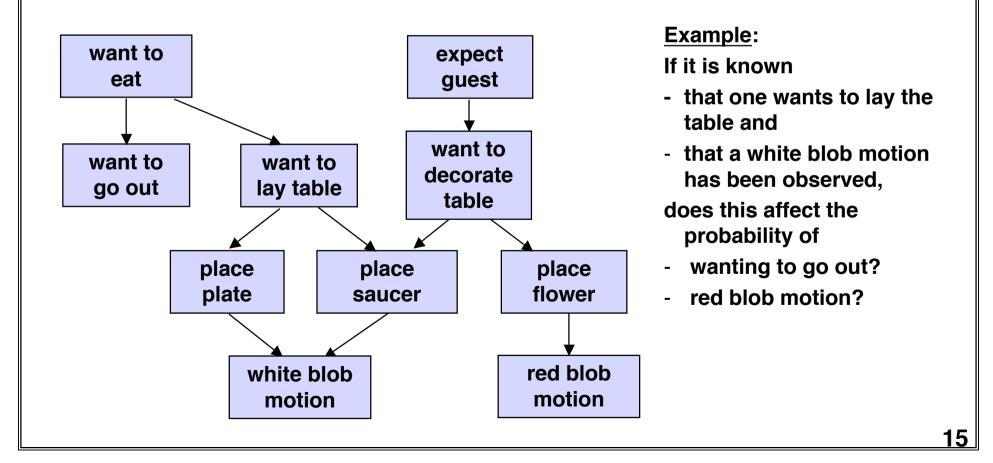
$$N_{mult} = D^2 + D^2 + D^2 + D$$

In this case, the heuristic did not reduce the computational expenses.

## **Dependance Analysis of Bayes Nets**

The arcs in a Bayes Net indicate pairwise independence. Can one infer other independencies

- in general?
- given partial evidence in terms of node values?

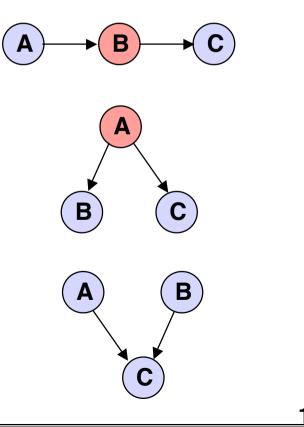


# **Blocking Evidence**

In general, (undirected) paths in a Bayes Net indicate possible flow of information. However, if hard evidence is given at an intermediate node, the path may be blocked.

**Blocking situations:** 

- In a serial connection from A to C via B, evidence from A to C is blocked by hard evidence about B.
- 2. In a diverging connection from A to B and C, evidence from B to C is blocked by hard evidence about A.
- 3. In a converging situation from A and B to C, any evidence about C results in evidence transmitted between A and B.



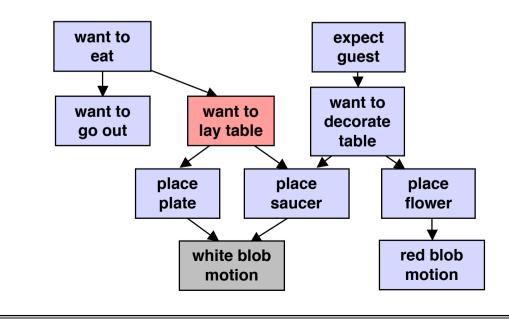
## **D-separation**

"D-separation" = no flow of evidence from one node to another

Two nodes X and Y in a Bayes Net are d-separated if, for all paths between X and Y, there is an intermediate node Z for which either:

1. the connection is serial or diverging and the value of Z is known for certain; or

2. the connection is converging and neither Z (nor any of its descendants) have received any evidence at all.



#### Example:

Hard evidence for "want to lay table" blocks influence of evidence for "white blob motion" on "want to eat" and "want to go out", but not on any other nodes.

# **Basic Kinds of Inferences**

### 1. Causal reasoning, prediction

Given upstream evidence, ask for downstream probability

Example: Given "want to eat" is true, what is the probability of "white blob motion"?

### 2. Evidential reasoning, explanation

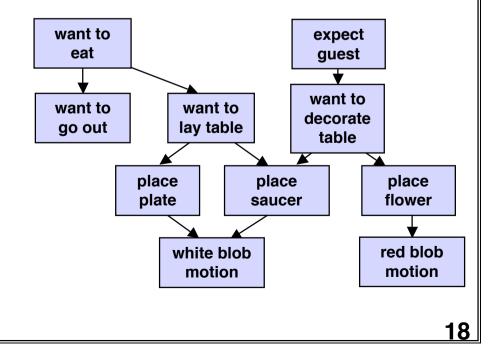
Given downstream evidence, ask for upstream probability

Example: Given "white blob motion" is true, what is the probability of "expect guest"?

### 3. Explaining away

Given evidence of a node with two parents and evidence for one of the parents, ask for probability of other parent node

**Example:** Given evidence for "place saucer" and "want to eat", what is the probability of "want to decorate table"?



### **Evidence Propagation in Polytrees**

polytree = DAG where each pair of distinct nodes is connected by a single (undirected) path

Any node  $X_k$  in a polytree separates the tree into an "upper" and "lower" part. Hence the marginal probability  $P(X_k=c)$  can be computed from two factors.

$$S^+ = \{X_i \text{ "above" } X_k\} \quad S^- = \{X_i \text{ below } X_k\}$$

$$P(X_{k}=c) = \sum_{X_{i} \neq X_{k}} P(X_{1} \dots X_{k}=c \dots X_{N})$$

$$= \sum_{X_{i} \neq X_{k}} P(X_{k}=c| Pa(X_{k})) \prod_{X_{i} \neq X_{k}} P(X_{i} | Pa(X_{i}))$$

$$= \left[\sum_{X_{i} \in S^{+}} P(X_{k}=c| Pa(X_{k})) \prod_{X_{i} \neq X_{k}} P(X_{i} | Pa(X_{i}))\right] \cdot \left[\sum_{X_{i} \in S^{-}} \prod_{X_{k} = c} P(X_{i} | Pa(X_{i}))\right]$$

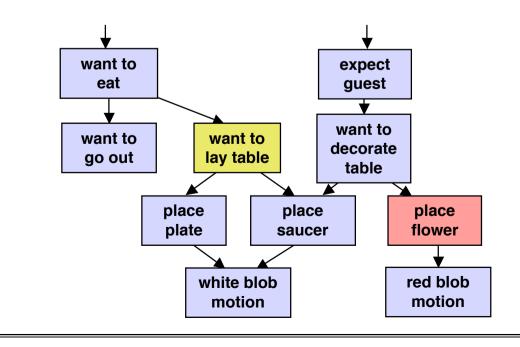
$$= \pi (X_{k}=c) \cdot \lambda (X_{k}=c) \implies \text{propagation scheme is possible}$$

# Approximate Inference in Bayesian Networks

- Inference in singly-connected Bayes Nets can be computed with O(N)
- Worst-case complexity in general Bayes Nets is exponential, hence approximate algorithms with less complexity are useful.

#### Basic idea:

Use random sampling (Monte Carlo method) to compute the approximate probability of an event based on a JPD and evidence.



Example: Determine P("place flower" I "want to lay table")

- Draw sample for each node based on probability conditioned on parent samples
- Repeat process many times
- Relative frequency of samples matching evidence converges to correct result in the limit.

# **Sampling Methods**

**Direct Sampling:** 

Estimate the probability of an event without evidence by sampling a Bayes Net.

Recommended Reading: Russell & Norvig: Artificial Intelligence - A Modern Approach, 2nd Ed., Prentice Hall, 2003

**Rejection Sampling:** 

Estimate the probability of an event by sampling a Bayes Net and discarding all samples which do not match the evidence

Sampling with Likelihood Weighting:

Estimate the probability of an event by sampling a Bayes Net and weighting all samples according to their likelihood to generate the evidence

All three methods generate consistent estimates (which converge to the true value).

# **Hidden Markov Models**

A sequence of observations may be governed by underlying probabilistic state transitions.

**Example:** A person laying a table may plan to first place the plates, then the cups, then the cutlery in a cyclic order (with a chance to deviate from this order).

As usual in vision, observations may be disturbed and may provide uncertain evidence about the current state.

Such phenomena may be modelled by a Hidden Markov Model (HMM).

A (discrete) HMM is defined by

- a finite number of states a<sub>1</sub>, a<sub>2</sub>, ... , a<sub>K</sub>
- a sequence of state transition events t<sub>0</sub>, t<sub>1</sub>, ..., t<sub>n</sub> (not necessarily times)
- probabilities of state transitions p<sub>ij</sub> from state i to state j , each depending only on the previous state
- observations b<sub>1</sub>, b<sub>2</sub>, ... , b<sub>M</sub> probabilistically related to each state
- probabilities q<sub>km</sub> which map states into observations

## **Notation for HMM**

- sequence of random variables  $X^{(1)}$ , ... ,  $X^{(n)}$  (state variables) with values from  $\{a_{1,} \dots, a_{K}\}$
- <u>Markov Chain</u> property of  $X^{(1)}, ..., X^{(n)}$ :  $P(X^{(n)}|X^{(n-1)}...X^{(1)}) = P(X^{(n)}|X^{(n-1)})$ 
  - if P(X<sup>(n)</sup>IX<sup>(n-1)</sup>) is independent of n, the Markov Chain is homogeneous
  - transition probabilities  $P(X^{(n)}=a_i|X^{(n-1)}=a_j)$  are represented by the state transition matrix

$$W^{(n)} = \begin{bmatrix} p_{11} & \dots & p_{1K} \\ \vdots & & \\ P_{K1} & \dots & P_{KK} \end{bmatrix}$$

- random variables  $Y^{(1)}$ , ...,  $Y^{(n)}$  (observations) with values from  $\{b_1, ..., b_M\}$
- observation probabilities P(Y<sup>(n)</sup>IX<sup>(n)</sup>) are represented by the matrix

$$Q = \begin{bmatrix} q_{11} & \dots & q_{1M} \\ \vdots & & \\ q_{K1} & \dots & q_{KM} \end{bmatrix}$$

• initial probabilities  $\underline{\pi}^T = [P(X^{(1)}=a_1) P(X^{(1)}=a_2) \dots P(X^{(1)}=a_K)]$ 

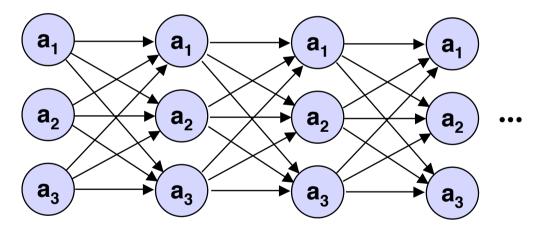
### **Properties of a Homogeneous HMM**

Probability vector for state X<sup>(2)</sup>:  $\underline{\pi}^{(2)} = W^T \underline{\pi}$ Probability vector for state X<sup>(n)</sup>:  $\underline{\pi}^{(n)} = (W^T)^{n-1} \pi$ 

There is always a stationary distribution  $\underline{\pi}_s$  such that  $\underline{\pi}_s = W^T \underline{\pi}_s$ 



 $p_{11}$   $p_{12}$   $a_2$   $p_{22}$  $p_{31}$   $p_{32}$   $p_{23}$  $p_{13}$   $a_3$   $p_{33}$  **<u>Trellis</u>** ("Spalier") representation:



- each (directed) path corresponds to a legal sequence of states
- the probability of a path is equal to the product of the transition probabilities

## Paths through a HMM

Given a sequence of N observations, we want to find the most probable sequence of states which may have led to the observations.

**Extension of trellis representation** 

- arc weights leading into states X<sup>(n)</sup>:
- node weights of states X<sup>(n)</sup>:

Example:

 product of initial probability and node and arc probabilities along path: transition probabilities p<sub>ij</sub>

observation likelihoods  $q_{jm}$  for given observations  $Y^{(n)} = b_{m_n}$ 

 $P(Y^{(1)}=b_{m_1}, \dots, Y^{(N)}=b_{m_N}, X^{(1)}=a_{k_1}, \dots, X^{(N)}=a_{k_N})$ probability of observations and states

# **Finding Most Probable Paths**

The most probable sequence of states is found by maximizing

$$\max_{k_1 \dots k_N} P(X^{(1)} = a_{k_1}, \dots, X^{(N)} = a_{k_N} | Y^{(1)} = b_{m_1}, \dots, Y^{(N)} = b_{m_N}) = \max_{\underline{a}} P(\underline{a} | \underline{b})$$

Equivalently, the most probable sequence of states follows from

 $\max_{\underline{a}} P(\underline{a} \ \underline{b}) = \max_{\underline{a}} P(\underline{a} \ | \ \underline{b}) P(\underline{b})$ 

Hence the maximizing sequence of states can be found by exhaustive search of all path probabilities in the trellis. However, complexity is  $O(K^N)$  with K = number of different states and N = length of sequence.

<u>The Viterbi Algorithm</u> does the job in O(KN)!

Overall maximization may be decomposed into a backward sequence of maximizations:

$$\max_{\underline{a}} P(\underline{a} \ \underline{b}) = \max_{k_1 \dots k_N} \pi_{k_1} q_{k_1 m_1} \prod_{n=2 \dots N} p_{k_{n-1} k_n} q_{k_{n-1} m_n}$$

$$= \max_{k_1} \pi_{k_1} q_{k_1 m_1} (\max_{k_2} p_{k_1 k_2} q_{i_2 m_2} (\dots (\max_{k_N} p_{k_{N-1} k_N} q_{k_{N-1} m_N})...))$$

$$\underbrace{\text{Step N}} \underbrace{\text{Step N-1}} \underbrace{\text{Step 1}} 26$$

### **Example for Viterbi Algorithm**

Typical maximization step of Viterbi algorithm:

max { p<sub>kn-1</sub>kn • q<sub>kn-1</sub>mn • <result of previous maximization step> }

Example as earlier:

W =
$$\begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.1 & 0.0 & 0.9 \\ 0.4 & 0.6 & 0.0 \end{bmatrix}$$
Q = $\begin{bmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{bmatrix}$  $\pi =$  $\begin{bmatrix} 0.6 \\ 0.3 \\ 0.1 \end{bmatrix}$ 

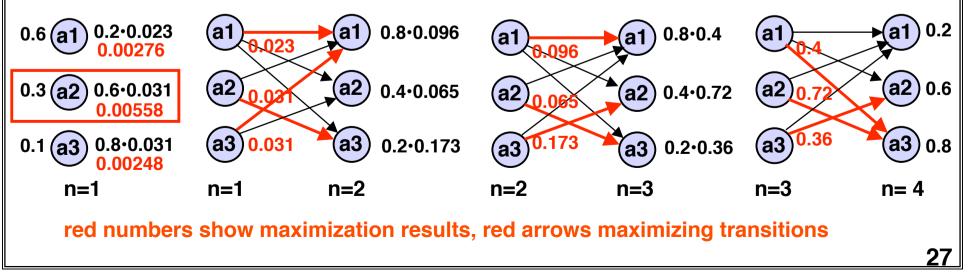
observations 
$$b_2$$
,  $b_1$ ,  $b_1$ ,  $b_2$ 

Step 4

Step 3

Step 2





### **Model Evaluation for Given Observations**

What is the likelihood that a particular HMM (out of several possible models) has generated the observations?

Likelihood of observations given model:

$$P(Y^{(1)}=b_{m_1}, ..., Y^{(N)}=b_{m_N} \mid model) = P(\underline{b}) = \sum_a P(\underline{a} \mid \underline{b})$$

Instead of summing over all <u>a</u>, one can use a forward algorithm based on the recursive formula:

$$\begin{array}{l} \displaystyle \frac{\mathsf{P}(a_{j}^{(n+1)}, \, b_{m_{1}}^{}, \, \dots, \, b_{m_{n}}^{}, \, b_{m_{n+1}}^{})}{= \mathsf{P}(a_{j}^{(n+1)}, \, b_{m_{1}}^{}, \, \dots, \, b_{m_{n}}^{}) \cdot \mathsf{P}(b_{m_{n+1}} \mid a_{j}^{(n+1)})}{= \sum\limits_{i}^{} \left[ \mathsf{P}(a_{j}^{(n+1)}, \, a_{i}^{(n)}, \, b_{m_{1}}^{}, \, \dots, \, b_{m_{n}}^{}) \right] \cdot \mathsf{P}(b_{m_{n+1}} \mid a_{j}^{(n+1)})}{= \sum\limits_{i}^{} \left[ \mathsf{P}(a_{j}^{(n+1)} \mid a_{i}^{(n)}, \, b_{m_{1}}^{}, \, \dots, \, b_{m_{n}}^{})\mathsf{P}(a_{i}^{(n)}, \, b_{m_{1}}^{}, \, \dots, \, b_{m_{n}}^{}) \right] \cdot \mathsf{P}(b_{m_{n+1}} \mid a_{j}^{(n+1)})}{= \sum\limits_{i}^{} \left[ \mathsf{P}(a_{j}^{(n+1)} \mid a_{i}^{(n)}) \cdot \mathsf{P}(a_{i}^{(n)}, \, b_{m_{1}}^{}, \, \dots, \, b_{m_{n}}^{}) \right] \cdot \mathsf{P}(b_{m_{n+1}} \mid a_{j}^{(n+1)})}{= \sum\limits_{i}^{} \left[ \mathsf{P}(a_{i}^{(n)}, \, b_{m_{1}}^{}, \, \dots, \, b_{m_{n}}^{}) \right] \cdot \mathsf{Q}_{j \, m_{n+1}}} \end{array}$$
Finally:
$$\mathsf{P}(b_{m_{1}}^{}, \, \dots, \, b_{m_{N}}^{}) = \sum\limits_{i}^{} \mathsf{P}(a_{i}^{(n+1)}, \, b_{m_{1}}^{}, \, \dots, \, b_{m_{N}}^{})$$

## **Example for Model Evaluation (1)**

Computing the probability of observations stepwise as they come in.

**Example as earlier:** 

$$W = \begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.1 & 0.0 & 0.9 \\ 0.4 & 0.6 & 0.0 \end{bmatrix} Q = \begin{bmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{bmatrix} \pi = \begin{bmatrix} 0.6 \\ 0.3 \\ 0.1 \end{bmatrix} \text{ observations} b_2, b_1, b_1, b_2$$

#### Step 1

$$P(a_j^{(1)}, b_{m_1}) = \pi_j \cdot q_{j m_1}$$

$$P(a_1^{(1)}, b_2) = 0.6 \cdot 0.2 = 0.12$$

$$P(a_2^{(1)}, b_2) = 0.3 \cdot 0.6 = 0.18$$

$$P(a_3^{(1)}, b_2) = 0.1 \cdot 0.8 = 0.08$$

Note that  $P(b_{m_1}, ..., b_{m_n})$  can be computed after each step by summing out the dependency on the state  $X^{(n)}$ .

### Step 2

$$P(a_{j}^{(2)}, b_{m_{1}}, b_{m_{2}}) = \Sigma [p_{ij} \cdot P(a_{i}^{(1)}, b_{m_{1}})] \cdot q_{j m_{2}}$$

$$P(a_{1}^{(2)}, b_{2}, b_{1}) = [0.3 \cdot 0.12 + 0.1 \cdot 0.18 + 0.4 \cdot 0.08] \cdot 0.8 = 0.0314$$

$$P(a_{2}^{(2)}, b_{2}, b_{1}) = [0.2 \cdot 0.12 + 0.6 \cdot 0.08] \cdot 0.4 = 0.0288$$

$$P(a_{3}^{(2)}, b_{2}, b_{1}) = [0.5 \cdot 0.12 + 0.9 \cdot 0.18] \cdot 0.2 = 0.0072$$

29

## **Example for Model Evaluation (2)**

### Example continued:

$$W = \begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.1 & 0.0 & 0.9 \\ 0.4 & 0.6 & 0.0 \end{bmatrix} Q = \begin{bmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{bmatrix} \pi = \begin{bmatrix} 0.6 \\ 0.3 \\ 0.1 \end{bmatrix}$$
observations  $b_2, b_1, b_1, b_2$ 

#### Step 3

$$\begin{split} \mathsf{P}(a_{j}^{(3)}, \, b_{m_{1}}^{}, \, b_{m_{2}}^{}, \, b_{m_{3}}^{}) &= \Sigma \; \left[ \; p_{ij}^{} \cdot \mathsf{P}(a_{j}^{(2)}^{}, \, b_{m_{1}}^{}, \, b_{m_{2}}^{}) \right] \cdot \mathsf{q}_{j \; m_{3}} \\ & \mathsf{P}(a_{1}^{(3)}, \, b_{2}^{}, \, b_{1}^{}, \, b_{1}^{}) = \left[ \; 0.3 \cdot 0.0314 + 0.1 \cdot 0.0288 \; + \; 0.4 \cdot 0.0072 \; \right] \cdot 0.8 = \; 0.01214 \\ & \mathsf{P}(a_{2}^{(3)}, \, b_{2}^{}, \, b_{1}^{}, \, b_{1}^{}) = \left[ \; 0.2 \cdot 0.0314 \; + \; 0.9 \cdot 0.0288 \; \right] \cdot 0.4 = \; 0.00424 \\ & \mathsf{P}(a_{3}^{(3)}, \, b_{2}^{}, \, b_{1}^{}, \, b_{1}^{}) = \left[ \; 0.5 \cdot 0.0314 \; + \; 0.9 \cdot 0.0288 \; \right] \cdot 0.2 = \; 0.00832 \end{split}$$

$$\begin{aligned} \mathsf{P}(\mathsf{a}_{j}^{(4)}, \, \mathsf{b}_{m_{1}}, \, \mathsf{b}_{m_{2}}, \, \mathsf{b}_{m_{3}}, \, \mathsf{b}_{m_{4}}) &= \Sigma \ [ \ \mathsf{p}_{ij} \cdot \mathsf{P}(\mathsf{a}_{j}^{(2)}, \, \mathsf{b}_{m_{1}}, \, \mathsf{b}_{m_{2}}, \, \mathsf{b}_{m_{3}})] \cdot \mathsf{q}_{j \, m_{4}} \\ & \mathsf{P}(\mathsf{a}_{1}^{(4)}, \, \mathsf{b}_{2}, \, \mathsf{b}_{1}, \, \mathsf{b}_{1}, \, \mathsf{b}_{2}) = [ \ 0.3 \cdot 0.01214 + 0.1 \cdot 0.00424 + 0.4 \cdot 0.00832 \,] \cdot 0.2 &= 0.001479 \\ & \mathsf{P}(\mathsf{a}_{2}^{(4)}, \, \mathsf{b}_{2}, \, \mathsf{b}_{1}, \, \mathsf{b}_{1}, \, \mathsf{b}_{2}) = [ \ 0.2 \cdot 0.01214 + 0.1 \cdot 0.00424 + 0.4 \cdot 0.00832 \,] \cdot 0.2 &= 0.001479 \\ & \mathsf{P}(\mathsf{a}_{3}^{(4)}, \, \mathsf{b}_{2}, \, \mathsf{b}_{1}, \, \mathsf{b}_{1}, \, \mathsf{b}_{2}) = [ \ 0.2 \cdot 0.01214 + 0.9 \cdot 0.00424 & 0.6 \cdot 0.00832 \,] \cdot 0.6 &= 0.004452 \\ & \mathsf{P}(\mathsf{a}_{3}^{(4)}, \, \mathsf{b}_{2}, \, \mathsf{b}_{1}, \, \mathsf{b}_{1}, \, \mathsf{b}_{2}) = [ \ 0.5 \cdot 0.01214 + 0.9 \cdot 0.00424 & ] \cdot 0.4 &= 0.003954 \end{aligned}$$

#### **Final step**

$$P(b_{m_1}, b_{m_2}, b_{m_3}, b_{m_4}) = \Sigma P(a_j^{(4)}, b_{m_1}, b_{m_2}, b_{m_3}, b_{m_4}) = 0.009885$$

30