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Video-Based Event Detection

Ph.D. research of Somboon Hongeng at the

University of Southern California (2003)

Slides adapted from a talk of S. Hongeng at

Hamburg University in October 2003
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Goals and Motivation

Retrieves semantic information from video

Determines if it contains any interesting events

When and Where? (i.e., spatial and temporal dimensions)

Applications include Video Surveillance, Video Summarization,

Human-Machine Interaction, Intelligent Living Spaces
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Monitoring of Vehicle Behaviors

Checkpoint is the area between the two tanks

“go through checkpoint”
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Monitoring of Activities in a Crowd

Multiple actors and objects

Interaction among individual actions

“theft at phone-booth (PB)”
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Challenges of Event Detection

Generic event representation

Effective and robust event recognition

Bridges the gap between pixel values and symbolic event

description

Computation of uncertainties

imperfect tracking of “objects” in noisy videos

similar activities must be distinguished

Variation in execution styles, temporal durations

Generic object recognition

Use and acquisition of scene and task context

…
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Prior State of the Art

Action Recognition using Bayesian networks

Remagnino et al. (1998), Buxton & Gong (1995)

Only handles static or simple events

Action Recognition using HMMs

Ohya (1992), Starner (1998), Oliver et al. (2000)

Parameter space becomes too large in complex events

Syntactic Pattern Recognition of Actions

Pinhanez (1998), Ivanov & Bobick (2000)

Action units are assumed to be detected and segmented reliably
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Large-Scale Event Detection System

Videos taken by a single, calibrated camera

Moving objects are observed from a distance

Closely coordinated movements of body parts cannot be observed

reliably

Blob shapes and trajectories are main sources of info

Scene and task contexts are given

Interesting events to be detected are known and can be modeled

a priori

Locations and types of scene objects are known
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System Overview

Ground
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Video
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Motion Properties
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the Reference Objects
Event 1 Event n...

Sequence of Most Likely Events

time

Motion
Detection

Moving Region
Filtering 3D Tracking

Motion Features
• Bounding Boxes
• Trajectories
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Motion Detection & Tracking

Statistical background modeling

Pixel-wise mode computation

Detects moving regions by background subtraction

Tracks objects by making correspondence between moving regions

at different times

Moving regions may split due to low contrast, noise

Uses distance on ground plane to select blob correspondence across

timeframes

Filters split regions based on color distribution consistency

10

Tracking “Theft at PhoneBooth”

Ground tracks are noisy in low camera angle

Few pixels mistake projects to several meters
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Event Classification

Single Thread Events

Simple Event

Short, coherent unit of movement (e.g., “going toward”)

Static poses (e.g., “stand”, “crouch”)

Composite Events

Linearly ordered continuous sequence of events

Long-term (normally longer than 30 frames)

Multiple Thread Events

Temporal and logical combination of two or more single
thread events
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Object Class and Simple Event Modeling

Object classes and simple events are modeled by a Bayesian

Network of sub-events or  properties of shape and trajectory

of the actor

Recognized by computing P(Si t
| Ot) at each time frame

Si: approaching 
the object

getting closer heading toward slowing down

distance to 
object

orientation
of trajectory

speed
evolution

direction 
toward object
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Inferring P(Si|Ot)

Compute “evidence”: Ot

Properties related to object trajectories

Properties related to bounding boxes

Compute P(Si|Ot) from Ot using Bayes’ rule

Assume conditional probabilities are Gaussian

Estimate Gaussian parameters from 600 frames of event samples

Normalize P(Si|Ot) based on all alternative events (Sj, Sk, etc…)
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Simple Event Analysis of

“Checkpoint A”

Evolution of the output of Bayesian networks P(Si|Ot) of four

simple events

The “zone” is shown by the quadrangle
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Simple Event Analysis of

“Checkpoint D”

Evolution of the output of Bayesian networks P(Si|Ot) of four

simple events

16

Simple Events of “Take Object”

Output of Bayesian networks P(Si|Ot) of three sub-events of

“take object”
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Composite Event Modeling

Finite state automaton is used to represent long-term composite

events

Dynamics of composite event are modeled by the transitions

from one event state to another

Durations of event states can vary

Given the Bayesian probabilities of each event state computed for

a period of time, a sequence of event states must be segmented

appropriately

S1: approach
the obj

S2: stand 
 close to
the obj

take
object =

S3: move 
along 

with obj

S0:
fail
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Recognition of Composite Event k

Let S0,…,Sn be states of composite event kMS; O=(O1,…,Ot) be the
observations; kMSi be the fact that Si is the current state of kMS

kMSn is recognized at frame t by computing

P(S1,t)

P(S2,t)

P(Sn, t)

kMS0
t1 “Sn”S1

<t1,t2>

Bayesian

Networks

“S0”

t1 t2 ttN = kMSn

 Note: we drop k in the next slides for clarity

(t1,…, tn)

A

P(kMSn
t|O)= 0     P (O| kMS0

t1 S1
<t1,t2> … Sn

<tn,t>) P(kMSn
t )

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•
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Factoring P(O|MSn
t) and P(MSn

t)

Under semi-HMM assumption that

O<tm,tm+1> is independent of Sn
<tn,tn+i> given Sm

<tm,tm+1>

probability of Sm making a transition to Sn depends on the

duration of Sm ,

we have:

(t1,…, tn)

A

P(MSn
t|O) = 0             P(MS0

t1) P (O<1,t1>| MS0
t1)

    a1,0 P(ds1
=t2-t1) P(O<t1,t2>|S1

<t1,t2>) …

    an,n-1 P(dsn
=t-tn) P(O<tn,t>| Sn

<tn,t>)

• an,m : the probability of the path from Sm to Sn

• P(dsm 
) : the distribution of event duration of Sm ,

• estimated using direct method, assuming a Gaussian

• uniform distributions for highly variable event durations
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Computing P(MSn
t|O)

Assuming that Ot and Sn
t’ are independent given Sn

t ,

P(O<tm,tn>|Sm
<tm,tn>) can be computed from Bayesian probabilities as:

P(O<tm,tn>|Sm
<tm,tn>) = <tm,tn>                 P(Sm

t|(Ot)
tm <= t <= tn

tm <= t <= tn P(Sm
t)

P(Ot)____

ti <= t <= ti+1 

P’(MSN
t|O) =     P’(MS0

t1| O<1,t1>)      ai,i-1 Bel (Si
<ti,ti+1>,O<ti,ti+1>)

1 <= i <= n (t1, … , tN)

A

   Let P’(MSN
t|O) be the normalized P(MSN

t|O);  

Bel (Si
<ti,ti+1>,O<ti,ti+1>) be   P(dsi

=ti+1-ti)     P(Si
t|(Ot);       

     We have:

<tm,tn>  = is a normalizing

constant
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Computing P’(MSn
t|O) Efficiently

Direct computation of P’(MSn
t|O) is O(nTn)

Efficient recursive algorithm based on Dynamic Programming can

achieve O(nT)

P’(MSn
t|O) =     P’(MS0

t1| O<1,t1>)      ai,i-1 Bel (Si
<ti,ti+1>,O<ti,ti+1>)

1 <= i <= n (t1, … , tn)

A

P’(MSn
t|O) =          an,n-1 Bel (Sn

<tn,t>,O<tn,t>) P’(MSn-1
tn| O<1,tn>)

(tn)

A

At frame t, for all Si, update Bel (Si
<ti,t>,O <ti,t>) with Bayesian probability

P(Si
t|(Ot); multiply it with P’(MSi-1

ti| O<1,ti>) that is already computed

22

Analysis of “Go Through Checkpoint”

P’(MSi
t|O)

P(Si|Ot)
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Analysis of “Avoid the Checkpoint”

P’(MSi
t|O)

P(Si|Ot)

24

Composite Event: “Take Object”

P’(MSi
t|O)

P(Si|Ot)
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Segmenting Composite Events

Set a prob threshold to detect ending times (kte
1,…,kte

p) of event

instances 1,..,p of  kMSn

At time frame t, compute P(MS*n
t|O) :

Backtrack the transitions to t1 and keep track of q  most likely starting

times (kts1, 
kts2,…, ktsq) during ktei-1 and ktei

Likelihood of event instance i that ends at kte
i is defined as the

maximum value of P’(MSn
t|O) during (kte

i-1, 
kte

i)

(t1,…, tn)

A

P(MS*n
t|O) = 0    max    P(O| MS0

t1 S1
<t1,t2> … Sn

<tn,t>) P(MSn
t )
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Simulation: Concatenation of

“Avoid” and “Go Through”

Sequence A3
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Segmenting “Avoid” and “Go Through”

72

91

154

173

Go Through [1]

7

29

51

64

Avoid[1

]
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Multi-Thread Event Modeling

Global activities can be described by several actors performing

related actions ...

Action threads are related by temporal/logical constraints

May overlap in a non-linear fashion

... represented by an event graph

Nodes are single-thread events

Links indicate temporal relations represented by 

Interval-Based Temporal Logic

“starts”, “meets”, “during”, “before”, “overlaps”, …
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“Theft at Phone Booth (PB)”

Defines five action threads:

Obj1 bring-in Obj2

Obj1 use-phone

Obj3 take Obj2

Obj3 leave Obj1

Obj2 taken-away-from Obj1

Defines the appropriate temporal relations

Obj1 bring-in Obj2 starts before Obj1 use-phone

Obj3 take Obj2 occurs during Obj1 use-phone

…

30

Event Graph for “Theft at PB”

b: starts before

d: occurs during

ol: overlaps

Obj1 “bring_in”
Obj2

Obj3 “take_obj” 
Obj2

Obj3 “leave” 
Obj1

{b}

{ol}

Obj2 “taken_away”
from Obj1

{ol} or

Obj1 
“use_phone”

{d}
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Multi-Thread Event Recognition

Individual event recognition is uncertain

Several instances of events may be detected during a period

of time

“approaches”, “stops”, “approaches”….

Search for the event threads that best fit the required

“interval-based relations”

How to evaluate the relations of event instances?

32

Evaluation of Temporal and Logical

Relations

Temporal Relations are evaluated by combining the probabilities

of event instances subject to the corresponding temporal

constraint

P(“A starts before B”) =

max   P(Am) P(Bn), if Start(Am) < Start(Bn),

 where “m” and “n” indicate instances of events

Logical Relation “Or”  is evaluated by taking the maximum value,

i.e.

P(“A or B”) =   max   (P(Am), P(Bn))

(m,n)

A

(m,n)

A
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Inference of a Multi-Thread Event

Propagate temporal constraints and probabilities of events along

forward temporal direction of event graph

We need to consider “bring_in before use_phone”  before we

evaluate “take_away during use_phone”

O(TPR+1) complexity if there are R event relations and P average

number of event instances with different starting times

Forward

Temporal

Direction 

Obj1 “bring_in”
Obj2

Obj3 “take_away” 
Obj2

Obj3 “leave” 
Obj1

{b}

{ol}

Obj2 “taken_way”
 from Obj1

{ol} or

Obj1 
“use_phone”

{d}
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Recognition of “Theft at PB”

Obj1 “bring-in”
Obj2

Obj3 “take_away” 
Obj2

Obj3 “leave” 
Obj1

{b}

{ol}

Obj2 
“taken_away”

 from Obj1

{ol} or

Obj1 
“make_call”

{d}
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Annotated Videos

Needs standard interface for video content descriptions

eXtended Markup Language (XML) interface can be defined for
event descriptions

Event analysis results can be written in XML

moving object and event descriptions

allows the search for content of videos

Information in XML files can be parsed and overlaid on the
original videos for visualization

36

Annotated “Theft at PB”
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Annotated “Object Transfer”

Obj1 “bring-in”
Obj2

Obj3 “take_away” 
Obj2

Obj3 “leave” 
Obj1

{b}

{ol}

Obj2 
“taken_away”

 from Obj1

{ol} or

38

Annotated “Assault”

Obj2 “clash”
Obj1

Obj1 “escape” 
Obj2

{m}

{ol}

Obj2 “follow”
Obj1

m: meet

ol: overlap
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Performance

96.7% accuracy on discriminating competing single-thread
events of 30 objects (including human and vehicles)

Small trajectory perturbation with Gauss noise

Performance drops 5% on 40 simulated noisy sequences
corrupted with N(µ=0, =6.68cm), equivalent of human walking
speed variance

Large variations simulating different execution styles (and some
tracking blunders)

81% detection rate, 16% false alarms

40

Computation Time

P2-333 MHz, 128 MB RAM (approximately 1/8th of today’s

processing power)

Computation time excludes motion detection and tracking

processes

0.46994104/15/2/34604Steal by

Blocking

0.7145383/11/3/16403Object

Transfer

10.6722.568/8/1/02402Assault

16.221838/3/0/12923Chekpnt D

43.62.538/3/0/11092Chekpnt A

fpsTime (sec)SE/CE/MT/CtxFramesNo of objsSequence
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Conclusion and Future Work

Probabilistic event analysis is robust, but performance depends
on tracking accuracy

Closely coordinated actions (e.g. dancing) may require
enhancements to the framework

Object recognition remains a difficult problem

A language formalism can be provided for defining events to
ease human communication

Needs to extend high level interpretation logic

Extension to multi-camera systems

Integrates with other types of information

Face, gestures, sounds, text, etc.


