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Segmentation

Segmenting the image into image elements which may correspond to
meaningful scene elements

high-level interpretations

objects

scene elements

image elements

raw images

Typical results
of first
segmentation
steps

Example:
Partitioning an
image into
regions which
may correspond
to objects
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Problems with Segmentation

landhouse scene upper part and leg of person

Greyvalues of foreground may be indistinguishable from greyvalues of
background.

In general, context knowledge is necessary for successful segmentation 
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Primary Goal of Segmentation

Answer depends on type and complexity of images: Less constrained
scenes must be segmented more conservatively.

Segmentation into ...

... entire objects e.g. for printed character recognition
industrial object recognition
medical cell analysis

... edge lines e.g. for aerial image analysis
indoor scenes

... edge elements, e.g. for natural scenes
     vertices, groupings

"Segmenting an image into image elements which may correspond to
meaningful scene elements"

What sort of image elements may correspond to meaningful scene
elements?
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Secondary Goals of Segmentation

• Multiple resolutions for subsequent processes
coarse resolution description for e.g.
-  analysis of image layout (horizon, foreground, background)
-  control of attention
-  planning a detailed analysis

fine resolution description e.g. for
-  details
-  stereo analysis
-  motion analysis

• Data reduction
Because of their large data volume, raw images are inconvenient as basic data
structures for image analysis
E.g. TV colour image 3 x 512 x 576  7 MB

10 sec TV colour images 10 x 25 x 7  1750 MB
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Thresholding

greyvalue image threshold too low threshold too high

Thresholding has been introduced as a discretization technique. The same
techniques can be applied for segmentation.
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Representing Regions
A region is a maximal 4- (or 8-) connected set of pixels.

Methods for digital region representation:

• grid occupancy
- labelling
- run-length coding
- quadtree coding
- cell sets

• boundary description
- chain code
- straight-line segments, polygons
- higher-order polynomials

Note that discretizations of an analog region are not shift or rotation invariant:

• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •
• • • •
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Component Labelling
Determining connected regions in B/W images

Component 1
(2 3 9)(3 3 7)(4 6 6)

Component 2
(4 12 12)

Component 3
(5 13 13)(6 9 14)(7 9 9 14 14)(8 9 9 14 14)(9 9 9 14 14)

Component 4
(9 0 0)(10 0 0)(11 0 3)(12 0 0 3 3)(13 0 0 3 3)(14 0 0 3 3)

Component 5
(9 5 6 12 12)(10 6 6 11 12)(11 6 11)

Component labelling of B/W images with 4-neighbourhood
Scan image left to right, top to bottom:

if pixel is white then continue
if pixel is black then

if left neighbour is white and upper neighbour is white then assign new label
if left neighbour is black and upper neighbour is white then assign left label
if left neighbour is white and upper neighbour is black then assign upper label
if left neighbour is black and upper neighbour is black then 

assign left label, merge left label and upper label

In this example:
component descriptions
using run-length coding

8

Boundaries

For a 4- (8-) connected region R the boundary is defined as the set of
pixels of R which are 8- (4-) connected to the complement Rc of R.

outer boundary

inner boundary

Disadvantage of this boundary definition:

R and Rc have different boundaries - but nothing is in between.  

Boundary pixels are usually ordered clockwise for outer boundaries and
counter-clockwise for inner boundaries.

Example for 8-connectivity:
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Chain Code
Chain code represents boundaries by "chaining" direction arrows between
successive boundary elements.

0

1
23

4

5
6

7

Arbitrary choice of starting point, chain
code can be represented e.g. by

{456671123}

Normalization by circular shift until the
smallest integer is obtained:

{112345667}

Chain code for 8-connectivity:

0

1

2

3

Chain code for 4-connectivity:

Arbitrary starting point:

{22233330010111}

Normalized:

{00101112223333}
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Chain Code Derivatives

Chain code is highly susceptible to discretization noise. Hence derived
properties are usually also noisy.

Slope: chain code 0 1 2 3 4 5 6 7
tan  0 1 ± -1 0 1 ± -1

 0 45 90 135 ±180 -135 -90 -450

1
23

4

5
6

7 Curvature:  = i+1 - i 

Example:

s
45º

{7000120007067010} s
45º



6

11

k-Slope and k-Curvature

Smoothed chain code slope and curvature:

L chain code
{p1 ... pN} starting points of chain code elements

right k-slope of L at i, k 1, is slope from pi to pi+k

left k-slope of L at i, k 1, is slope from pi to pi-k

k-curvature at i is difference between right and left k-slope 

Example:

k = 3

45º

s
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Digital Straight Lines

What are the properties of a
chain code which represents a
straight line boundary?

may represent a straight line

may not represent a straight line

may not represent a straight line

Necessary and sufficient straight line properties of chain code:
1.  Only 2 element types
2.  Numerical difference of element types (mod 8) at most 1
3.  One of the element types occurs only in runs of length 1 and is

distributed "as regularly as possible".

"as regularly as possible":  Assume 2 types a and b, b single. Runs of a must have
lengths l0 and l0+1. Consider l0-runs and l0+1-runs as 2 chain code types and apply
straight line criteria recursively.
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Uniformity Assumption

Many segmentation procedures are based on a uniformity assumption:

• meaningful objects correspond to regions which satisfy a
uniformity predicate
=> region finding

• object boundaries correspond to discontinuities of a uniformity
predicate
=> edge finding

Typical uniformity predicates:
- greyvalues within a narrow interval (e.g. in B/W images)
- similar colour
- small greyvalue gradient
- uniform statistical properties (e.g. local distribution, texture)
- smoothness in 3D
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Region Growing

Regions which satisfy a uniformity criterion may be grown from seed
regions based on two criteria:

1. Merge region with new area if merged region satisfies uniformity
criterion.
E.g. greyvalue variance remains limited

2. Merge region with new area if boundary area satisfies a merging
criterion.
E.g. boundary area has weak edges

Problem with (1):  Large regions may be merged with small patches even
if the patches are distinctly different.

Problem with (2):  Distinct large regions may be merged if they are
connected by a weak boundary.
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Segmentation into Regions
Using Histograms

Basic idea:

h

x

Recursive histogram decomposition:

• compute 1D histograms of pixel features (e.g. R, G, B histograms)
• use "clearest" histogram for decomposition into regions
• apply procedure recursively to individual regions

Problems:
• histograms do not reflect neighbourhood relationships
• histograms may not show multimodality clearly
• bad early decisions cannot be corrected
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Region Segmentation by
Split-and-merge

etc.

• Begin with an arbitrary region
decomposition in a quadtree plane

• Split each region which violates a uniformity
predicate into its 4 quadtree sons

• Merge (recursively) all regions which jointly
satisfy a uniformity criterion

Region boundaries are determined along quadtree region boundaries. 

Supporting data structure:

Region adjacency graph

11 12
1314

2

34

11 12 2

14

4

13

3
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Maximum-likelihood Edge Finding

Hypothesis test about the likelihood of a boundary
between two regions D1 and D2

D1
D2

H0: Pixels from D1 and D2 stem from the same statistical source N(µ0, 0)

H12: Pixels from D1 and D2 stem from different statistical sources N(µ1, 1)
and N(µ2, 2), respectively.

Maximum-likelihood decision chooses hypothesis Hi for which
P(gij are observed | Hi is true) is maximal.

Step 1:  Maximum-likelihood estimation of µ0, 0, µ1, 1, µ2, 2 

ij D i
gijµ i=

1
Di i

2
= 1
Di ij D i

(gij – µ)
2

i = 0, 1, 2

Step 2:  Determine likelihood quotient 

g D0

P( g|H0 )

g D1

P( g|H12 )
g D2

P(g|H12 )
> 1 > SDecision

rule:

S  to  be
determined
empirically

ˆ  1
D1  ˆ  2

D2

ˆ  0
D0
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Greyvalue Discontinuities

Edges may be localized via the 1. and 2. derivative of the greyvalue function.

s

x

y

Gradient

vector in the direction 
of steepest increase

s

s

s

g

g/ s

2g/ s2

edges may be
located at ...

... high gradient
magnitudes ...

... zero crossings
of the second
derivative  

g(x, y) =
g
x

g
y

 

 
 

 

 
 



10

19

Are Edges Object Boundaries?

1. Discontinuities of physical object surface
properties
e.g. colour, material, smoothness
("reflectivity")

2. Discontinuities of object surface
orientation towards observer
e.g. strong curvature, 3D-edges, specularities

3. Discontinuities of illumination
e.g. shadows, secondary illumination

4. Discretization effects
e.g. binarisation

1

2

3

Four reasons for edges in images:
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Edges in Real-World Images

Image of Michaelis Church in Hamburg
(thanks to Wolfgang Förstner)

Consider vertical edge with lamps left
and right:

In the lower part, the region left of the
edge is darker than right the region of
the edge, in the upper part vice versa.

=> In between, the edge must have no
contrast at all!
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Robert´s Cross Operator

gi
j

gi-1 j

gi j-1gi-1 j-1

X

Computes the gradient based on crosswise
greyvalue differences

gradient magnitude

gi j-1 - gi-1 j + gij - gi-1 j-1

max (gi j-1 - gi-1 j) , (gij - gi-1 j-1)
approximations

gradient direction

direction angle  in coordinate
system rotated by 450

| gij|= (gi j-1 gi 1 j )
2
+ (gi j gi 1 j- 1 )2

tan =
gij - gi-1 j-1
gi j-1 - gi-1 j
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Sobel Operator

gij g0

g1g2g3

g4

g5 g6 g7 • Computes gradient components x and y
based on pixels taken from a 3x3
neighbourhood.

• Performs simultaneous smoothing

gx = (g1+ 2g0 + g7) - (g3+ 2g4 + g5)
gy = (g1+ 2g2 + g3) - (g7+ 2g6 + g5)

| gij|= gx
2
+ gy

2

tan   =
gy

gx

x

y

Popular operator contained in most image processing software packages 
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Example for Sobel Operator

g(x, y)
greyvalue image

0 = black
255 = white

gx 
x-component of 
greyvalue gradient

0 = greyvalue 128

gy 
y-component of 
greyvalue gradient

0 = greyvalue 128
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Kirsch Operator

gij g0

g1g2g3

g4

g5 g6 g7 • Computes gradient magnitude in 8
directions, selects maximum

• Performs simultaneous smoothing

| gij|= max
k=0...7mod8

{3 (gk + gk+1 + gk+2 + gk+3 + gk+4} 5(gk+5 + gk+6 + gk+ 7 )}

gradient magnitude

gradient direction

 = (900 + kmax•450) mod 3600

Example: kmax = 7

 = (900 + 7•450) mod 3600 = 450 
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Laplacian Operator

2g =
2g
x2

+
2g
y2

Orientation-independent measure for the strength
of the second derivative of a greyvalue function

Discrete approximation by differences of differences of greyvalues: 
2
gi j = (gi+1 j - gi j) - (gi j - gi-1 j)

+ (gi j+1 - gi j) - (gi j - gi j-1)

= gi+1 j + gi-1 j + gi j+1 + gi j-1 - 4gi j

"difference between the greyvalue of a
point and the average of its surrounding"

gi
j

gi-1 j

gi j-1gi-1 j-1

gi j+1gi-1 j+1

gi+1 j

gi+1 j-1

gi+1 j+1

Using the Laplacian operator on raw
images will typically give unacceptable
results since the 2. derivative amplifies
noise. (A single isolated point
generates the maximal response.)
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Marr-Hildreth Operator

Locates edges at zero crossings of second derivative of smoothed image 

with Gaussian filter

Laplacian of Gaussian (LoG):   

Interchanging the order of differentiation  and convolution in the LoG gives

h(x, y) = c
x2 + y2 2

4

 

 
  

 
e

x2 +y 2

2 2 c normalizes the sum of
mask elements to zero

0 0 -1 0 0
0 -1 -2 -1 0
-1 -2 16 -2 -1
0 -1 -2 -1 0
0 0 -1 0 0

discrete
5 x 5
approximation

Nickname:
Mexican Hat Operator

2 f(x, y, ) • g(x ,y)[ ]

f(x, y) = e
x2 +y 2

2 2

2 f(x, y, )[ ] •g(x,y) = h(x,y) • g(x ,y)
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Difference of Gaussians (DoG)

The Marr-Hildreth Operator can be approximated by the difference
of 2 Gaussians:

h(x, y) = f1(x, y) - f2(x, y) f1

f2

1-D DoG

The best approximation of the Laplacian is for 2  1.6 1

original
image

result of DoG filtering
with 1 = 1, 2 = 1.6
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Canny Edge Detector (1)
Optimal edge detector for step edges corrupted by white noise.

Optimality criteria:
• Detection of all important edges and no spurious responses
• Minimal distance between location of edge and actual edge
• One response per edge only

1. Derivation for 1D results in edge detection filter which can be
effectively approximated (< 20% error) by the 1rst derivative of a
Gaussian smoothing filter.

2. Generalization to 2D requires estimation of edge orientation:

  

n =
(f • g)

(f • g)

n normal perpendicular to edge
f Gaussian smoothing filter
g greyvalue image

Edge is located at local maximum of g convolved with f in direction n:

  

2

n2
f • g = 0 "non-maximal suppression"
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Canny Edge Detector (2)

Algorithm includes
- choice of scale 
- hysteresis thresholding to avoid streaking (breaking up edges)
- "feature synthesis" by selecting large-scale edges dependent on

lower-scale support

1. Convolve image g with Gaussian filter f of scale  

2. Estimate local edge normal direction n for each point in the image

3. Find edge locations using non-maximal suppression

4. Compute magnitude of edges by

5. Threshold edges with hysteresis to eliminate spurious edges
6. Repeat steps (1) through (5) for increasing values of   

7. Aggregate edges at multiple scales using feature synthesis

  
(f • g)
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Examples for Canny Edge Detector

original Canny operator  = 1.0 Canny operator  = 2.8
(without feature synthesis)


