High-level Vision

What are the tasks (is the scope) of high-level vision?

Vision as silent-movie understanding

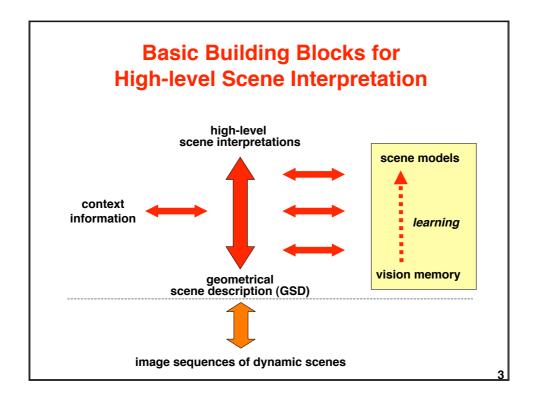
- connecting to common-sense knowledge
- understanding goal-oriented behaviour
- vision in context

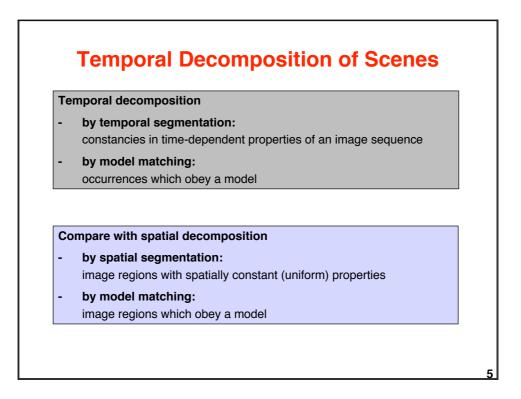
Vision and acting

- robot vision
- goal-oriented vision, attention control
- spatial and temporal reasoning

Vision and learning

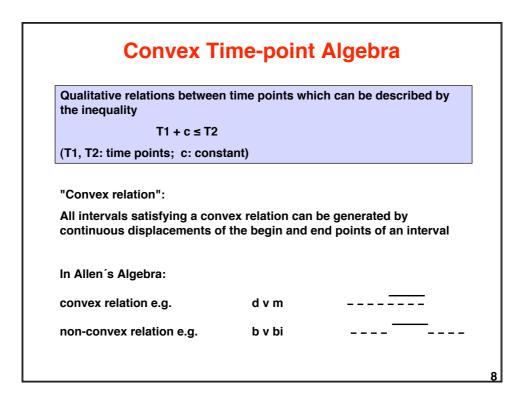
- discovering reoccurring patterns
- building models
- predicting from experience

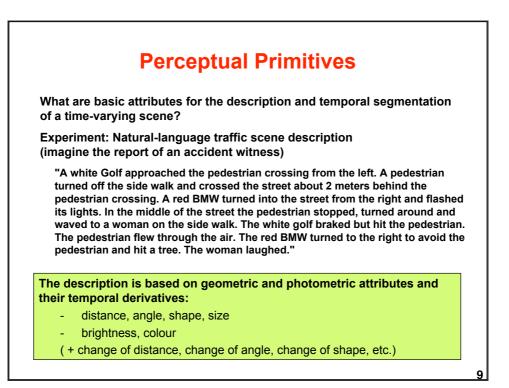


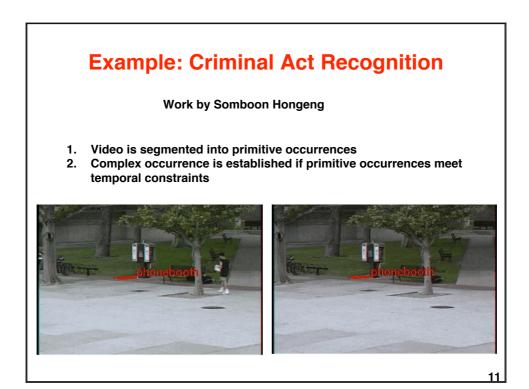


Topics of High-Level Vision

- Representing and recognizing structures consisting of several spatially and temporally related components (e.g. object configurations, situations, occurrences, episodes)
- Exploiting high-level knowledge and reasoning for scene prediction
- Understanding purposeful behaviour (e.g. obstacle avoidance, grasping and moving objects, behaviour in street traffic)
- Mapping between quantitative and qualitative descriptions
- Natural-language communication about scenes
- Learning high-level concepts from experience
- · Connecting uncertain knowledge with logic-based reasoning




Basic Representational Unitsscenespatially and temporally coherent real-world sectiongeometrical scene
description (GSD)scene description in terms of object locations in an
image sequencescene interpretationscene description in terms of instantiated scene
models (object configurations, occurrences,
episodes, purposive actions)scene modelconceptual unit for scene interpretation


Distinguish betwee	en relations based on
time points	
discrete	T ∈ {1,2,3, …}
continuous	T∈ℜ
time intervals	l ₁ "during" l ₂
Distinguish betwee	en
Distinguish betwee	en T1 = T2 + 4

Interval Relations in Allen´s Algebra				
	BEFORE (I1, I2)	< >		
	MEETS (11, 12)	m mi		
	OVERLAPS (I1, I2)	o oi		
	FINISHES (I1, I2)	f fi		
	STARTS (11, 12)	s si		
	DURING (11, 12)	d di		
	EQUAL (I1, I2)	=		
		7		

Simple durative predicates applied to p	erceptual pri	mitives	
 constant value 			
 value within certain interval 			
- value smaller / larger than threshold	d		
object A moves			
distance between			
objects A and B gets smaller			
goto official			

Qualitative Predicates for Occurrences in Traffic Scenes

Project NAOS: "Natural-language description of object motions in traffic scenes" (1981 - 1984)

exist

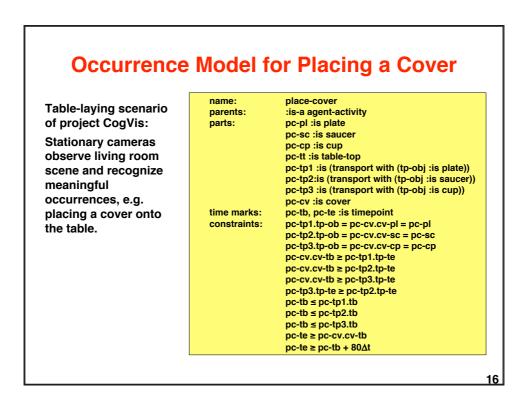
move decelerate, accelerate turn_left, turn_right increasing_distance, reducing_distance along, across in_front_of, behind, beside on, above, under, below at, near_to between (and others) Note that qualitative predicates are often (but must not be) part of natural language.

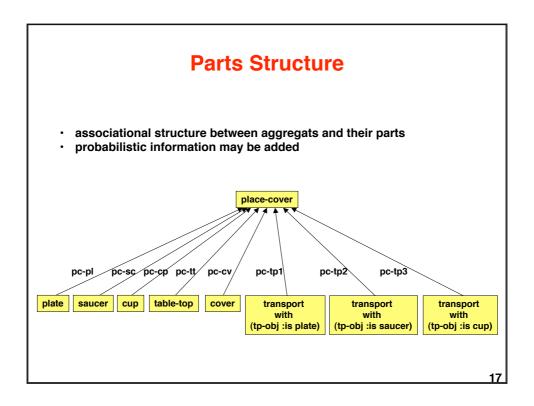
For technical applications one may use technical (artificial) qualitative predicates, e.g.

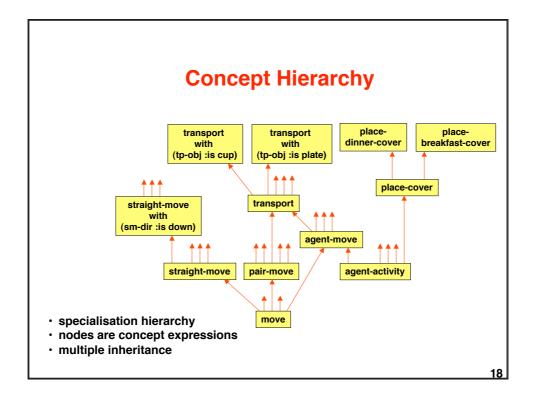
 $v50 (= 45 \le v \le 55 \text{ km/h})$

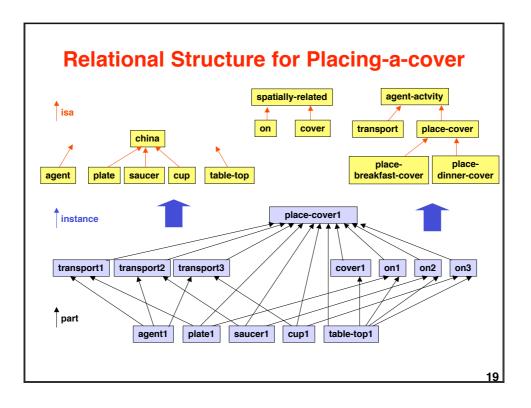
shape_x (= shape_index \leq 4.174)

12

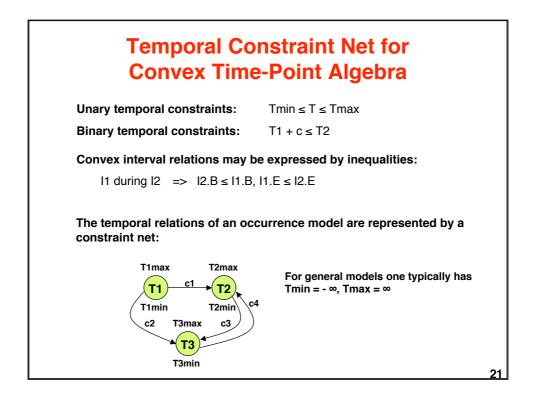

Basic ingredients:	relational structure
Ŭ	taxonomy
	• partonomy
	spatial relational language
	temporal relational language
	object appearance models
• An occurrence	model describes a class of occurrences by
propertiessub-occurr	model describes a class of occurrences by rences (= components of the occurrence) etween sub-occurrences
 properties sub-occuri relations b 	rences (= components of the occurrence)
 properties sub-occuri relations b 	rences (= components of the occurrence) etween sub-occurrences

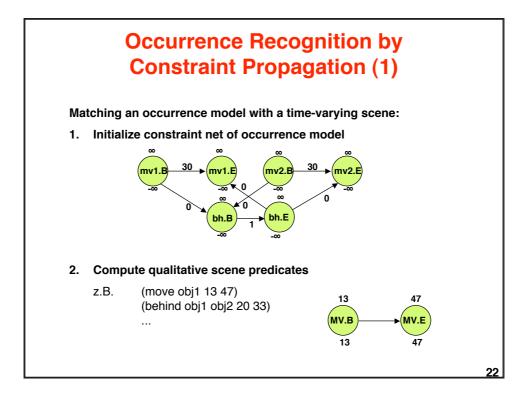

Occurrence Model for Overtaking in Street Traffic			
Arguments:	:local-name ue (?veh1 :is-a vehicle)		
U	(?veh2 :is-a vehicle)		
Time marks:	(ue.B ue.E)		
Component events:	(mv1 :is-a (move ?veh1 mv1.B mv1.E))		
	(mv2 :is-a (move ?veh2 mv2.B mv2.E))		
	(bh :is-a (behind ?veh1 ?veh2 bh.B bh.E))		
	(bs :is-a (beside ?veh1 ?veh2 bs.B bs.E))		
	(bf :is-a (before ?veh1 ?veh2 bf.B bf.E))		
	(ap :is-a (approach ?veh1 ?veh2 ap.B ap.E))		
	(rc :is-a (recede ?veh1 ?veh2 rc.B rc.E))		
Temporal relations:	(ue.B = bh.B)		
	(ue.E = bf.E)		
	(ap :during mv1)		
	(ap :during mv2)		
	(rc :during mv1)		
	(rc :during mv2)		
	(bh :overlaps bs)		
	(bs :overlaps bf)		
	(bh :during ap)		
	(bf :during rc)		

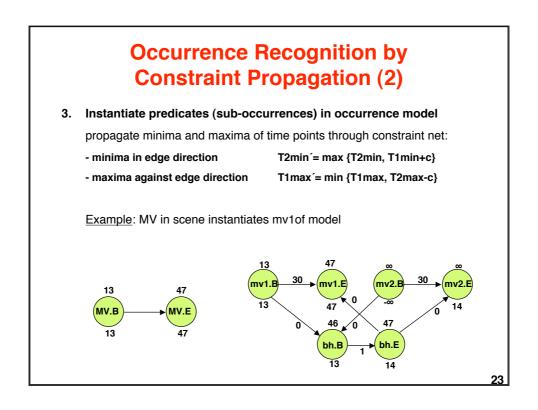

Occurrence Model for Transport Vehicle Behaviour

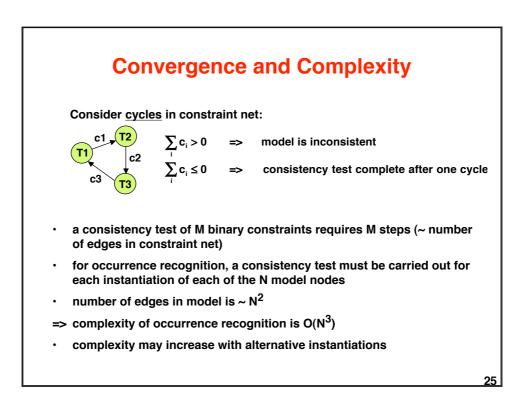

The occurrence model *transport-load* describes the regular unloading procedure of an automatic transport vehicle

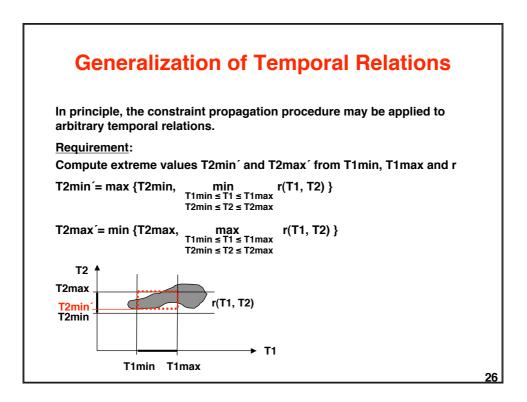
Predicate:	transport-load	
	:is-a occurrence-model	
	:local-name tl	
Arguments:	(?dtv :is-a stacker)	
	(?rm :is-a room)	
	(?stat :is-a station)	
Time marks:	(tl.B tl.E)	
Component events:	(er :is-a (enter-room ?rm ?dtv er.B er.E))	
	(fs :is-a (free-station ?stat fs.B fs.E))	
	(ul :is-a (unload ?dtv ?stat ul.B ul.E))	
	(ex :is-a (exit-room ?rm ?dtv ex.B ex.E))	
Temporal relations:	(tl.B + 10 ≤ tl.E)	
	(tl.E - 12 ≤ tl.B)	
	(er :before ul)	
	(ul :before ex)	
	(ul :starts-within fs)	
	(tl.B = er.B)	
	(tl.E 0 ex.B)	

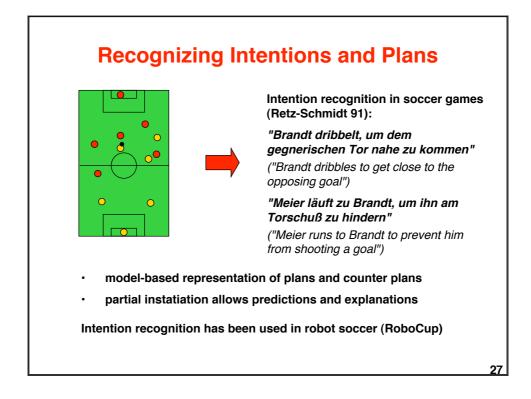


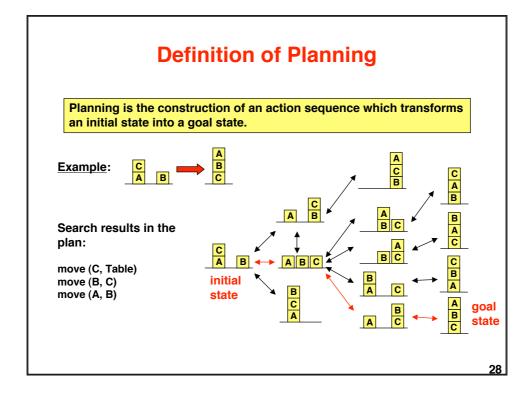


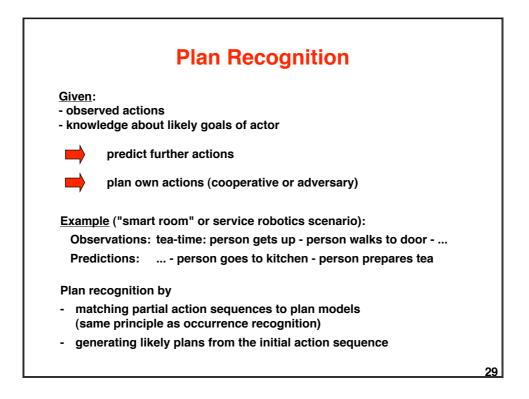


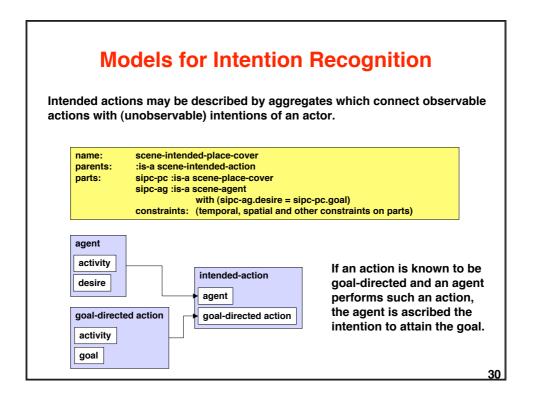


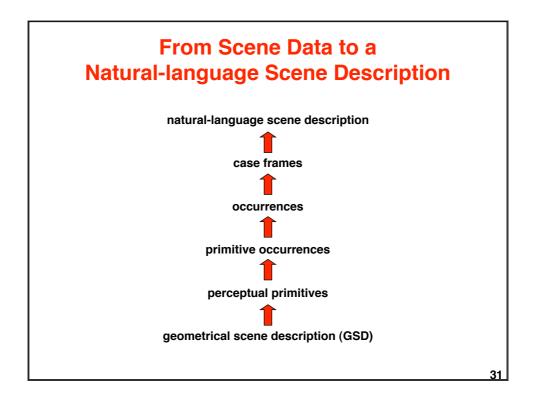


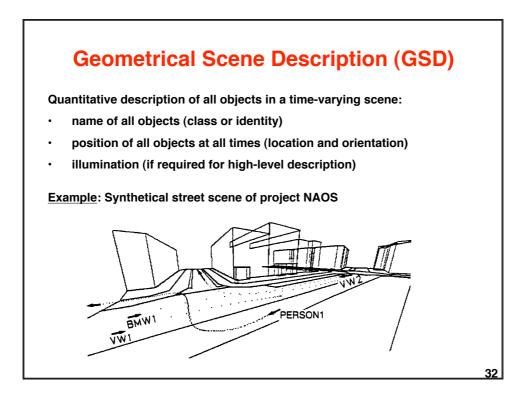


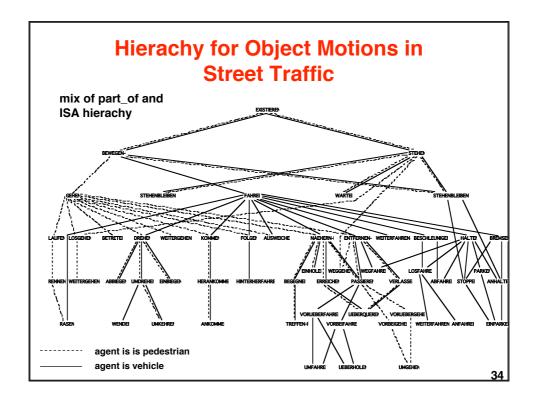


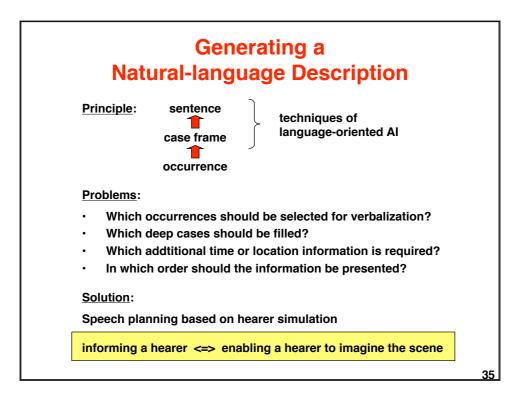

<section-header><section-header><section-header><text><text><text><text><list-item><list-item>

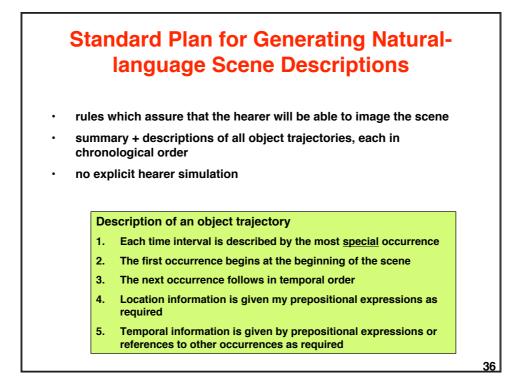


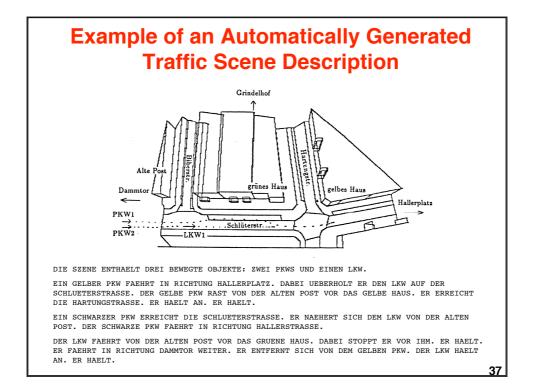


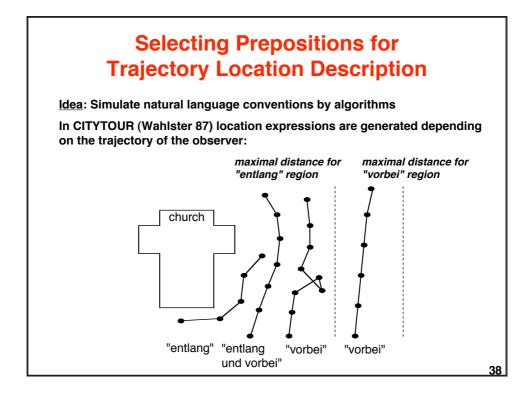











Typical Data of a GSD				
	location	orientation time		
(LAGE VW2	(779. 170. 0.)	$(-1.0 \ 0.0 \ 0.0) \ 0)$		
(LAGE VW2	(753. 170. 0.)	$(-1.0 \ 0.0 \ 0.0) \ 1)$		
(LAGE VW2	(727. 170. 0.)	$(-1.0 \ 0.0 \ 0.0) \ 2)$		
(LAGE VW2	(701. 170. 0.)	(-1.0 0.0 0.0) 3)		
(LAGE VW2	(675. 170. 0.)	$(-1.0 \ 0.0 \ 0.0) \ 4)$		
(LAGE VW2	(649. 170. 0.)	(-1.0 0.0 0.0) 5)		
(LAGE VW2	(623. 170. 0.)	(-0.999 0.037 0.0) 6)		
(LAGE VW2	(596. 171. 0.)	(-1.0 0.0 0.0) 7)		
(LAGE VW2	(570. 171. 0.)	(-1.0 0.0 0.0) 8)		
(LAGE VW2	(544. 171. 0.)	(-1.0 0.0 0.0) 9)		
(LAGE VW2	(518. 171. 0.)	(-0.999 0.0383 0.0) 10)		
(LAGE VW2	(492. 172. 0.)	(-1.0 0.0 0.0) 11)		
(LAGE VW2	(466. 172. 0.)	(-1.0 0.0 0.0) 12)		
(LAGE VW2	(440. 172. 0.)	(-0.999 0.0383 0.0) 13)		
(LAGE VW2	(414. 173. 0.)	(-1.0 0.0 0.0) 14)		
(LAGE VW2	(388. 173. 0.)	(-0.999 0.037 0.0) 15)		
(LAGE VW2	(361. 174. 0.)	(-1.0 0.0 0.0) 16)		
LAGE VW2	(335. 174. 0.)	(-0.999 0.038 0.0) 17)		
:	. ,	· · · ·		
		3	3	

