

It is useful to determine direct influences Y_i on a random variable X, because given the Y_i , X is independent of other Variables Z_k "upstream" to the Y_i .

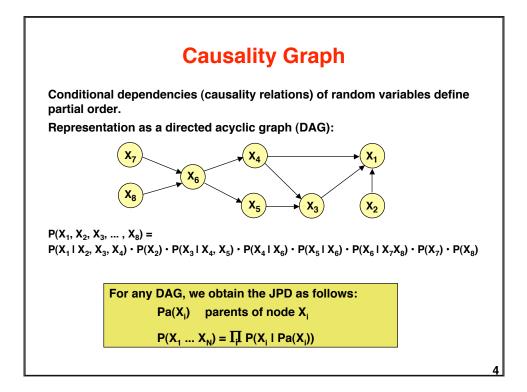
Let dom(X) be the domain of X, i.e. the set of possible values of X.

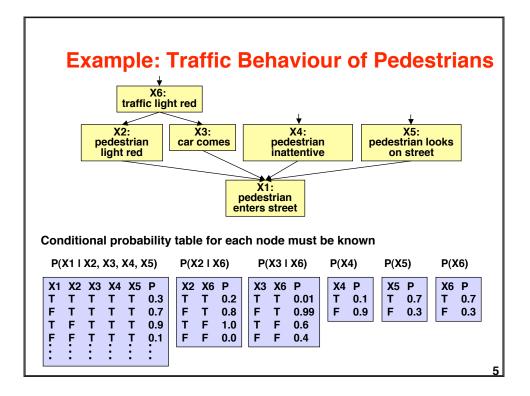
A random variable X is independent of Z given Y if for all $x_i \in dom(X)$, for all $y_i \in dom(Y)$, and for all $z_k \in dom(Z)$,

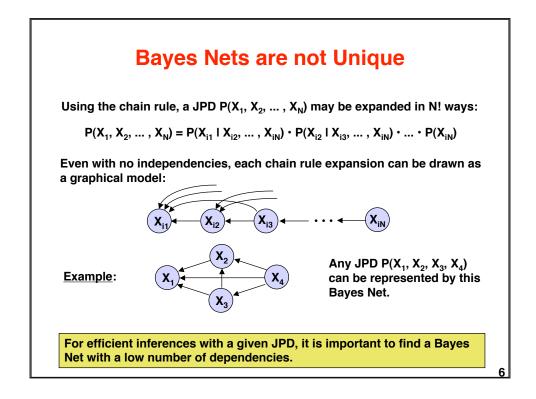
 $P(X=x_i | Y=y_i, Z=z_k) = P(X=x_i | Y=y_i)$

Example: X=plate_on_table, Y=laying_table, Z=want_to_eat

X Y Z TTT TTF TFT TFF	P(XYZ) .096 .064 .0 .0	X Y Z FTT FTF FFT FFF	P(XYZ) .024 .016 .08 .72	Check whether X is independent of Z given Y!
-----------------------------------	------------------------------------	-----------------------------------	--------------------------------------	--







Constructing a Bayes Net

By domain analysis:

- 1. Select discrete variables X_i relevant for domain
- 2. Establish partial order of variables according to causality
- 3. In the order of decreasing causality:
 - (i) Generate node X_i in net
 - (ii) As predecessors of X_i choose the smallest subset of nodes which are already in the net and from which X_i is causally dependent
 - (iii) Determine a table of conditional probabilities for X_i

By data analysis:

Use a learning method to establish a Bayes Net approximating the empirical joint probablity distribution.

Computing Inferences

We want to use a Bayes Net for probabilistic inferences of the following kind:

Given a joint probability $P(X_1, ..., X_N)$ represented by a Bayes Net, and evidence $X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K}$ for some of the variables, what is the probability $P(X_n=a_i | X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K})$ of an unobserved variable to take on a value a_i ?

In general this requires

- expressing a conditional probability by a quotient of joint probabilities

$$P(X_{n}=a_{i} | X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}}) = \frac{P(X_{n}=a_{i}, X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}{P(X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}$$

- determining partial joint probabilities from the given total joint probability by summing out unwanted variables

$$P(X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K}) = \sum_{X_{n_1}, ..., X_{n_K}} P(X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K}, X_{n_1}, ..., X_{n_K})$$

Normalization

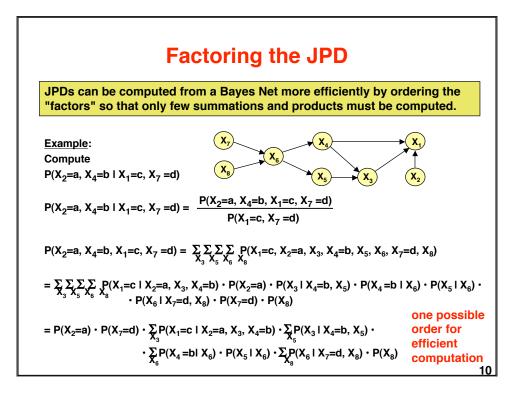
Basic formula for computing the probability of a query variable X_n from a JPD P($X_1, ..., X_N$) given evidence $X_{m_1} = a_{m_1}, ..., X_{m_K} = a_{m_K}$:

$$P(X_{n}=a_{i} | X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}}) = \frac{P(X_{n}=a_{i}, X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}{P(X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}$$

The denominator on the right is independent of a_i and constitutes a normalizing factor α . It can be computed by requiring that the conditional probabilities of all a_i sum to unity.

$$P(X_n = a_i | X_{m_1} = a_{m_1}, ..., X_{m_K} = a_{m_K}) = \alpha \{ P(X_n = a_i, X_{m_1} = a_{m_1}, ..., X_{m_K} = a_{m_K}) \}$$

Formulae are often written in this simplified form with $\boldsymbol{\alpha}$ as a normalizing factor.



Finding the <u>best</u> possible order for computing factors of a JPD is not tractable, in general. The set-factoring heuristic is a greedy (suboptimal) algorithm with often excellent results.

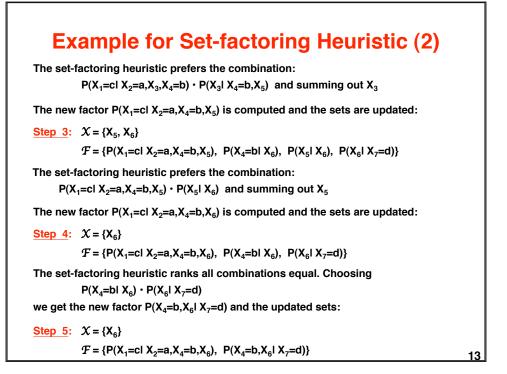
Given X set of random variables to be summed out

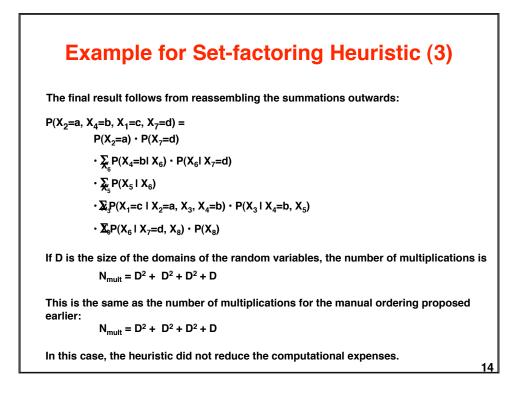
 ${\mathcal F}$ set of factors to be combined

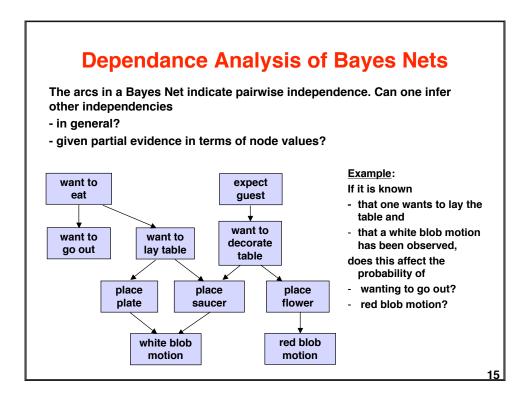
Set-factoring heuristic:

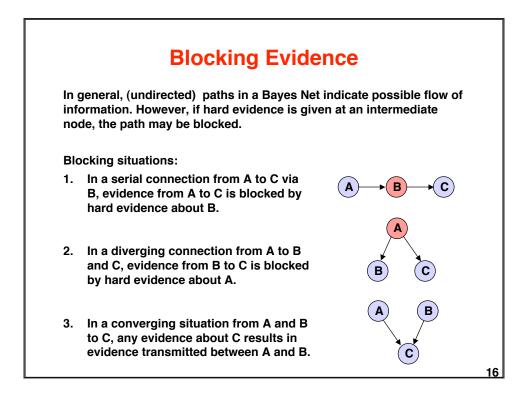
- Pick the pair of factors which produces the smallest probability table after combination and summing out as many variables of X as possible.
 Break ties by choosing the pair where most variables are summed out.
- Place resulting factor into set \mathcal{F} , remove summed-out variables from χ and repeat procedure.

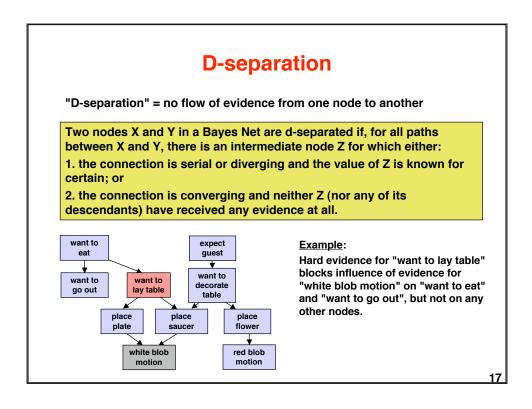
Example for Set-factoring Heuristic (1) Compute $P(X_2=a, X_4=b, X_1=c, X_7=d) = \sum_{X_3} \sum_{X_5} \sum_{X_6} \sum_{X_6} P(X_1=c|X_2=a, X_3, X_4=b) \cdot P(X_2=a) \cdot P(X_3|X_4=b, X_5) \cdot P(X_2=a, X_4=b, X_5) \cdot P(X_3|X_4=b, X_5) \cdot P(X_5|X_5=b, X_5 = P(X_5|X_5=b, X_5 = P(X_5|X_5=b, X_5) \cdot P(X_5|X_5=b, X_5) \cdot P(X_5|X_5=b, X_5) \cdot P(X_5|X_5=b, X_5) \cdot P(X_5|X_5=b, X_5 = P(X_5|X_5=b, X_5) \cdot P(X_5|X_5=b, X_5 = P(X_5|X_5=b, X_5) \cdot P$ $\cdot P(X_4=b|X_6) \cdot P(X_5|X_6) \cdot P(X_6|X_7=d,X_8) \cdot P(X_7=d) \cdot P(X_8)$ **<u>Step 1</u>**: $X = \{X_3, X_5, X_6, X_8\}$ $\mathcal{F} = \{\mathsf{P}(\mathsf{X}_1 = \mathsf{cl} \ \mathsf{X}_2 = \mathsf{a}, \mathsf{X}_3, \mathsf{X}_4 = \mathsf{b}), \ \mathsf{P}(\mathsf{X}_2 = \mathsf{a}), \ \mathsf{P}(\mathsf{X}_3 | \ \mathsf{X}_4 = \mathsf{b}, \mathsf{X}_5), \ \mathsf{P}(\mathsf{X}_4 = \mathsf{bl} \ \mathsf{X}_6), \ \mathsf{P}(\mathsf{X}_5 | \ \mathsf{X}_6), \ \mathsf{P}(\mathsf{X}_6 | \ \mathsf{X}_6), \ \mathsf{P}(\mathsf{X}_6$ $P(X_6|X_7=d,X_8), P(X_7=d), P(X_8)$ After extracting the constant factors $P(X_2=a)$ and $P(X_7=d)$, 6 factors remain, hence 15 possible pairs may be formed. Assuming equally sized domains, the set-factoring heuristic prefers 2 combinations: $P(X_1=c|X_2=a,X_3,X_4=b) \cdot P(X_3|X_4=b,X_5)$ and summing out X_3 (i) $P(X_6|X_7=d,X_8) \cdot P(X_8)$ and summing out X_8 (ii) Choosing (ii), the new factor $P(X_6 | X_7 = d)$ is computed and the sets are updated: **Step 2:** $X = \{X_3, X_5, X_6\}$ $\mathcal{F} = \{ \mathsf{P}(\mathsf{X}_1 = \mathsf{cl} \; \mathsf{X}_2 = \mathsf{a}, \mathsf{X}_3, \mathsf{X}_4 = \mathsf{b}), \; \mathsf{P}(\mathsf{X}_3 | \; \mathsf{X}_4 = \mathsf{b}, \mathsf{X}_5), \; \mathsf{P}(\mathsf{X}_4 = \mathsf{bl} \; \mathsf{X}_6), \; \mathsf{P}(\mathsf{X}_5 | \; \mathsf{X}_6), \; \mathsf{P}(\mathsf{X}_6 | \; \mathsf{X}_7 = \mathsf{d}) \}$ 12

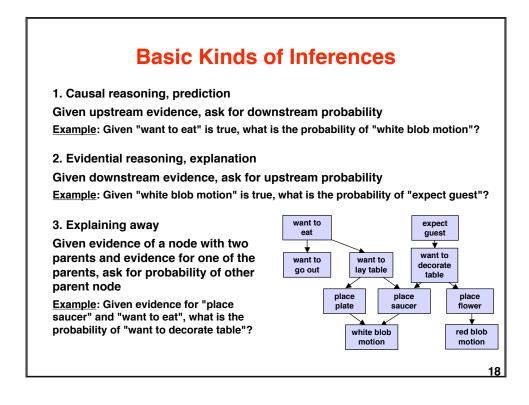


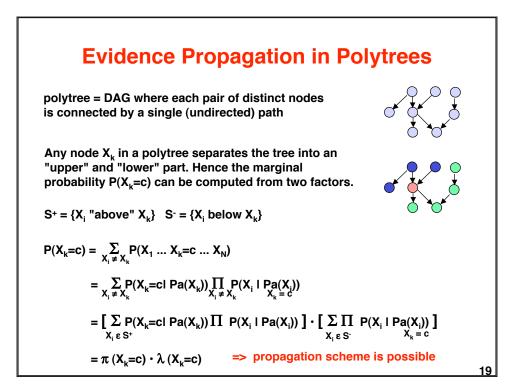


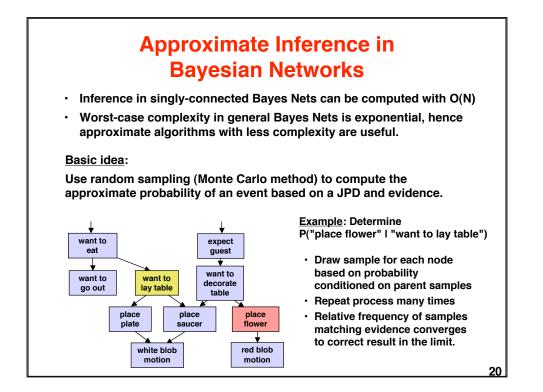


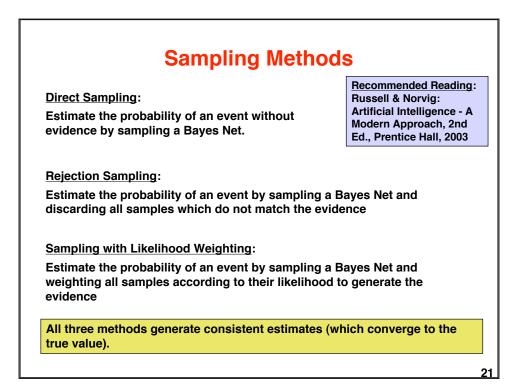


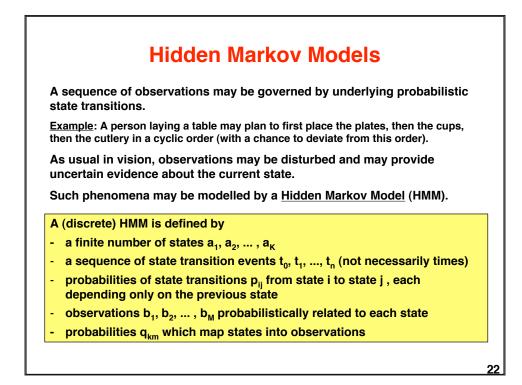


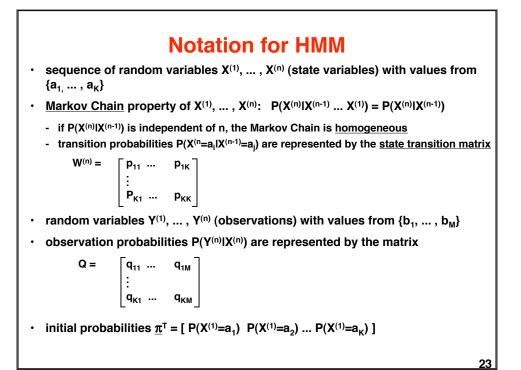


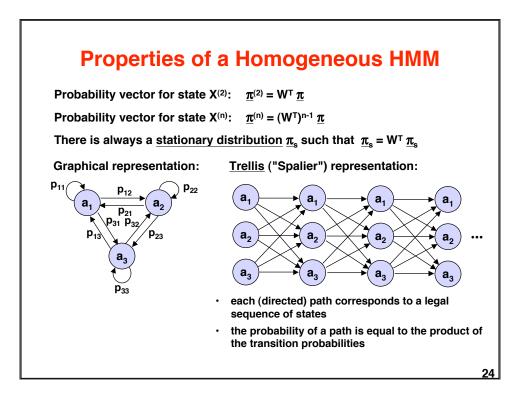


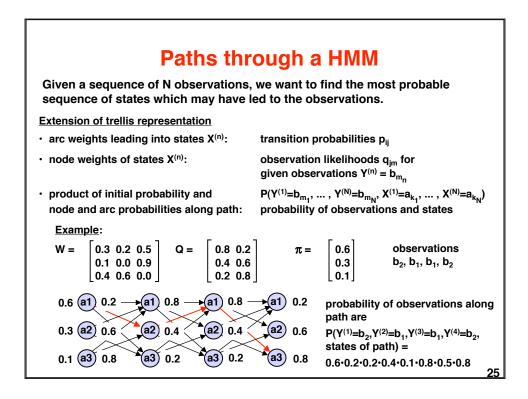












Finding Most Probable Paths The most probable sequence of states is found by maximizing $\max_{k_1...,k_N} P(X^{(1)}=a_{k_1},...,X^{(N)}=a_{k_N} | Y^{(1)}=b_{m_1},...,Y^{(N)}=b_{m_N}) = \max_{\underline{a}} P(\underline{a} | \underline{b})$

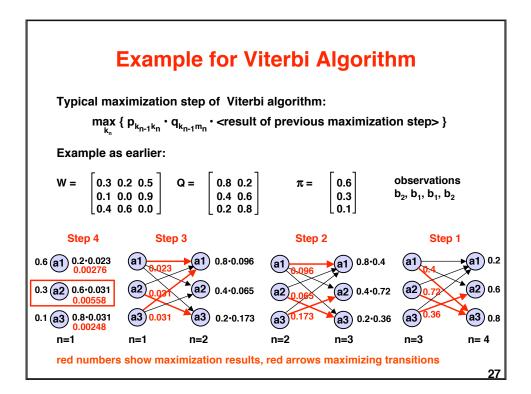
Equivalently, the most probable sequence of states follows from

 $\max_{a} P(\underline{a} \ \underline{b}) = \max_{a} P(\underline{a} \ | \ \underline{b}) P(\underline{b})$

Hence the maximizing sequence of states can be found by exhaustive search of all path probabilities in the trellis. However, complexity is $O(K^N)$ with K = number of different states and N = length of sequence.

The Viterbi Algorithm does the job in O(KN)!

Overall maximization may be decomposed into a backward sequence of maximizations:



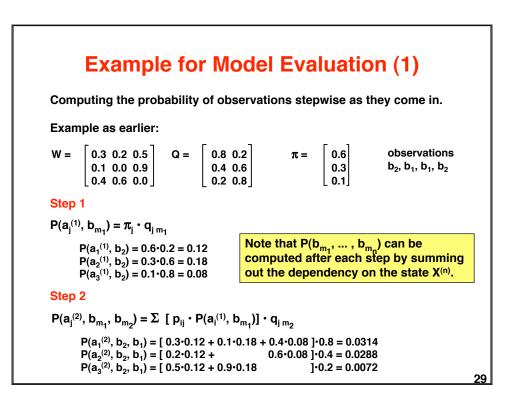
Model Evaluation for Given Observations What is the likelihood that a particular HMM (out of several possible models) has generated the observations?

Likelihood of observations given model:

 $P(Y^{(1)}=b_{m_1}, \dots, Y^{(N)}=b_{m_N} \mid model) = P(\underline{b}) = \sum_{\underline{a}} P(\underline{a} \mid \underline{b})$

Instead of summing over all $\underline{a},$ one can use a forward algorithm based on the recursive formula:

$$\begin{split} & \frac{\mathsf{P}(\mathbf{a}_{j}^{(n+1)}, \mathbf{b}_{m_{1}}, \dots, \mathbf{b}_{m_{n}}, \mathbf{b}_{m_{n+1}})}{= \mathsf{P}(\mathbf{a}_{j}^{(n+1)}, \mathbf{b}_{m_{1}}, \dots, \mathbf{b}_{m_{n}}) \cdot \mathsf{P}(\mathbf{b}_{m_{n+1}} \mid \mathbf{a}_{j}^{(n+1)})}{= \sum_{i} \left[\mathsf{P}(\mathbf{a}_{j}^{(n+1)}, \mathbf{a}_{i}^{(n)}, \mathbf{b}_{m_{1}}, \dots, \mathbf{b}_{m_{n}}) \right] \cdot \mathsf{P}(\mathbf{b}_{m_{n+1}} \mid \mathbf{a}_{j}^{(n+1)})}{= \sum_{i} \left[\mathsf{P}(\mathbf{a}_{j}^{(n+1)} \mid \mathbf{a}_{i}^{(n)}, \mathbf{b}_{m_{1}}, \dots, \mathbf{b}_{m_{n}}) \mathsf{P}(\mathbf{a}_{i}^{(n)}, \mathbf{b}_{m_{1}}, \dots, \mathbf{b}_{m_{n}}) \right] \cdot \mathsf{P}(\mathbf{b}_{m_{n+1}} \mid \mathbf{a}_{j}^{(n+1)})}{= \sum_{i} \left[\mathsf{P}(\mathbf{a}_{j}^{(n+1)} \mid \mathbf{a}_{i}^{(n)}) \cdot \mathsf{P}(\mathbf{a}_{i}^{(n)}, \mathbf{b}_{m_{1}}, \dots, \mathbf{b}_{m_{n}}) \right] \cdot \mathsf{P}(\mathbf{b}_{m_{n+1}} \mid \mathbf{a}_{j}^{(n+1)})}{= \sum_{i} \left[\mathsf{p}_{ij} \cdot \mathsf{P}(\mathbf{a}_{1}^{(n)}, \mathbf{b}_{m_{1}}, \dots, \mathbf{b}_{m_{n}}) \right] \cdot \mathsf{q}_{j m_{n+1}}} \end{split}$$
Finally:
$$\mathsf{P}(\mathbf{b}_{m_{1}}, \dots, \mathbf{b}_{m_{N}}) = \sum_{i} \mathsf{P}(\mathbf{a}_{i}^{(n+1)}, \mathbf{b}_{m_{1}}, \dots, \mathbf{b}_{m_{N}})$$



Example for Model Evaluation (2)				
Example continued:				
$W = \begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.1 & 0.0 & 0.9 \\ 0.4 & 0.6 & 0.0 \end{bmatrix} Q = \begin{bmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{bmatrix} \pi = \begin{bmatrix} 0.6 \\ 0.3 \\ 0.1 \end{bmatrix} $ observations b_2, b_1, b_1, b_2				
Step 3				
$\begin{split} P(a_{j}^{(3)}, b_{m_{1}}, b_{m_{2}}, b_{m_{3}}) &= \Sigma \; \left[\; p_{ij} \cdot P(a_{j}^{(2)}, b_{m_{1}}, b_{m_{2}}) \right] \cdot q_{j \; m_{3}} \\ & P(a_{1}^{(3)}, b_{2}, b_{1}, b_{1}) = \left[\; 0.3 \cdot 0.0314 + 0.1 \cdot 0.0288 \; + \; 0.4 \cdot 0.0072 \; \right] \cdot 0.8 = \; 0.01214 \\ & P(a_{2}^{(3)}, b_{2}, b_{1}, b_{1}) = \left[\; 0.2 \cdot 0.0314 \; + \; 0.9 \cdot 0.0288 \; \right] \cdot 0.2 = \; 0.00424 \\ & P(a_{3}^{(3)}, b_{2}, b_{1}, b_{1}) = \left[\; 0.5 \cdot 0.0314 \; + \; 0.9 \cdot 0.0288 \; \right] \cdot 0.2 = \; 0.00832 \\ & Step 4 \end{split}$				
$P(a_{j}^{(4)}, b_{m_{1}}, b_{m_{2}}, b_{m_{3}}, b_{m_{4}}) = \Sigma [p_{ij} \cdot P(a_{j}^{(2)}, b_{m_{1}}, b_{m_{2}}, b_{m_{3}})] \cdot q_{jm_{4}}$				
$\begin{array}{l} P(a_1^{(4)},b_2,b_1,b_1,b_2) = [\ 0.3 \cdot 0.01214 + 0.1 \cdot 0.00424 \ + \ 0.4 \cdot 0.00832 \] \cdot 0.2 = 0.001479 \\ P(a_2^{(4)},b_2,b_1,b_1,b_2) = [\ 0.2 \cdot 0.01214 \ + \ 0.6 \cdot 0.00832 \] \cdot 0.6 = 0.004452 \\ P(a_3^{(4)},b_2,b_1,b_1,b_2) = [\ 0.5 \cdot 0.01214 \ + \ 0.9 \cdot 0.00424 \] \cdot 0.4 = 0.003954 \end{array}$				
Final step				
$P(b_{m_1}, b_{m_2}, b_{m_3}, b_{m_4}) = \Sigma P(a_j^{(4)}, b_{m_1}, b_{m_2}, b_{m_3}, b_{m_4}) = 0.009885$				

