
1

1

Video-Based Event Detection

Ph.D. research of Somboon Hongeng at the
University of Southern California (2003)

Slides adapted from a talk of S. Hongeng at
Hamburg University in October 2003
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Goals and Motivation

 Retrieves semantic information from video
 Determines if it contains any interesting events
 When and Where? (i.e., spatial and temporal dimensions)

 Applications include Video Surveillance, Video Summarization,
Human-Machine Interaction, Intelligent Living Spaces



2

3

Monitoring of Vehicle Behaviors

 Checkpoint is the area between the two tanks
“go through checkpoint”
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Monitoring of Activities in a Crowd

 Multiple actors and objects
 Interaction among individual actions

“theft at phone-booth (PB)”
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Challenges of Event Detection

 Generic event representation
 Effective and robust event recognition

 Bridges the gap between pixel values and symbolic event
description

 Computation of uncertainties
 imperfect tracking of “objects” in noisy videos
 similar activities must be distinguished

 Variation in execution styles, temporal durations
 Generic object recognition
 Use and acquisition of scene and task context
 …
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Prior State of the Art

 Action Recognition using Bayesian networks
 Remagnino et al. (1998), Buxton & Gong (1995)
 Only handles static or simple events

 Action Recognition using HMMs
 Ohya (1992), Starner (1998), Oliver et al. (2000)
 Parameter space becomes too large in complex events

 Syntactic Pattern Recognition of Actions
 Pinhanez (1998), Ivanov & Bobick (2000)
 Action units are assumed to be detected and segmented reliably
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Large-Scale Event Detection System

 Videos taken by a single, calibrated camera

 Moving objects are observed from a distance
 Closely coordinated movements of body parts cannot be observed

reliably
 Blob shapes and trajectories are main sources of info

 Scene and task contexts are given
 Interesting events to be detected are known and can be modeled

a priori
 Locations and types of scene objects are known
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Motion Detection & Tracking

 Statistical background modeling
 Pixel-wise mode computation

 Detects moving regions by background subtraction

 Tracks objects by making correspondence between moving regions
at different times
 Moving regions may split due to low contrast, noise
 Uses distance on ground plane to select blob correspondence across

timeframes
 Filters split regions based on color distribution consistency
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Tracking “Theft at PhoneBooth”

 Ground tracks are noisy in low camera angle
 Few pixels mistake projects to several meters
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Event Classification

 Single Thread Events
 Simple Event

 Short, coherent unit of movement (e.g., “going toward”)
 Static poses (e.g., “stand”, “crouch”)

 Composite Events
 Linearly ordered continuous sequence of events
 Long-term (normally longer than 30 frames)

 Multiple Thread Events
 Temporal and logical combination of two or more single

thread events
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Object Class and Simple Event Modeling

 Object classes and simple events are modeled by a Bayesian
Network of sub-events or  properties of shape and trajectory
of the actor

 Recognized by computing P(Si t
| Ot) at each time frame

Si: approaching 
the object

getting closer heading toward slowing down

distance to 
object

orientation
of trajectory

speed
evolution

direction 
toward object
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Inferring P(Si|Ot)

 Compute “evidence”: Ot

 Properties related to object trajectories
 Properties related to bounding boxes

 Compute P(Si|Ot) from Ot using Bayes’ rule
 Assume conditional probabilities are Gaussian

 Estimate Gaussian parameters from 600 frames of event samples
 Normalize P(Si|Ot) based on all alternative events (Sj, Sk, etc…)
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Simple Event Analysis of
“Checkpoint A”

 Evolution of the output of Bayesian networks P(Si|Ot) of four
simple events

 The “zone” is shown by the quadrangle
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Simple Event Analysis of
“Checkpoint D”

 Evolution of the output of Bayesian networks P(Si|Ot) of four
simple events

16

Simple Events of “Take Object”

 Output of Bayesian networks P(Si|Ot) of three sub-events of
“take object”
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Composite Event Modeling

 Finite state automaton is used to represent long-term composite
events

 Dynamics of composite event are modeled by the transitions
from one event state to another
 Durations of event states can vary
 Given the Bayesian probabilities of each event state computed for

a period of time, a sequence of event states must be segmented
appropriately

S1: approach
the obj

S2: stand 
 close to
the obj

take
object =

S3: move 
along 

with obj
S0:
fail
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Recognition of Composite Event k

 Let S0,…,Sn be states of composite event kMS; O=(O1,…,Ot) be the
observations; kMSi be the fact that Si is the current state of kMS

 kMSn is recognized at frame t by computing

P(S1,t)
P(S2,t)

P(Sn, t)

kMS0
t1 “Sn”S1

<t1,t2>

Bayesian
Networks

“S0”

t1 t2 ttN = kMSn

 Note: we drop k in the next slides for clarity

(t1,…, tn)

AP(kMSn
t|O)=α0  Σ   P (O| kMS0

t1 S1
<t1,t2> … Sn

<tn,t>) P(kMSn
t )

•••
•••

•••
•••

•••
•••

•••
•••

•••
•••

•••

••••
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Factoring P(O|MSn
t) and P(MSn

t)

 Under semi-HMM assumption that
 O<tm,tm+1> is independent of Sn

<tn,tn+i> given Sm
<tm,tm+1>

 probability of Sm making a transition to Sn depends on the
duration of Sm ,

we have:

(t1,…, tn)

AP(MSn
t|O) = α0        Σ     P(MS0

t1) P (O<1,t1>| MS0
t1)

    a1,0 P(ds1
=t2-t1) P(O<t1,t2>|S1

<t1,t2>) …
    an,n-1 P(dsn

=t-tn) P(O<tn,t>| Sn
<tn,t>)

• an,m : the probability of the path from Sm to Sn

• P(dsm 
) : the distribution of event duration of Sm ,

• estimated using direct method, assuming a Gaussian
• uniform distributions for highly variable event durations
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Computing P(MSn
t|O)

 Assuming that Ot and Sn
t’ are independent given Sn

t ,
P(O<tm,tn>|Sm

<tm,tn>) can be computed from Bayesian probabilities as:

P(O<tm,tn>|Sm
<tm,tn>) = β<tm,tn>          Π       P(Sm

t|(Ot)
tm <= t <= tn

Π
tm <= t <= tn P(Sm

t)
P(Ot)____

ti <= t <= ti+1 

P’(MSN
t|O) =  Σ   P’(MS0

t1| O<1,t1>)  Π    ai,i-1 Bel (Si
<ti,ti+1>,O<ti,ti+1>)

1 <= i <= n (t1, … , tN)A

   Let P’(MSN
t|O) be the normalized P(MSN

t|O);  
Bel (Si

<ti,ti+1>,O<ti,ti+1>) be   P(dsi
=ti+1-ti)  Π   P(Si

t|(Ot);       

     We have:

β<tm,tn>  = is a normalizing constant
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Computing P’(MSn
t|O) Efficiently

 Direct computation of P’(MSn
t|O) is O(nTn)

 Efficient recursive algorithm based on Dynamic Programming can
achieve O(nT)

P’(MSn
t|O) =  Σ   P’(MS0

t1| O<1,t1>)  Π    ai,i-1 Bel (Si
<ti,ti+1>,O<ti,ti+1>)

1 <= i <= n (t1, … , tn)

A

P’(MSn
t|O) =   Σ       an,n-1 Bel (Sn

<tn,t>,O<tn,t>) P’(MSn-1
tn| O<1,tn>)

(tn)

A

At frame t, for all Si, update Bel (Si
<ti,t>,O <ti,t>) with Bayesian probability

P(Si
t|(Ot); multiply it with P’(MSi-1

ti| O<1,ti>) that is already computed

22

Analysis of “Go Through Checkpoint”

P’(MSi
t|O)

P(Si|Ot)
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Analysis of “Avoid the Checkpoint”

P’(MSi
t|O)

P(Si|Ot)

24

Composite Event: “Take Object”

P’(MSi
t|O)

P(Si|Ot)
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Segmenting Composite Events
 Set a prob threshold to detect ending times (kte

1,…,kte
p) of event

instances 1,..,p of  kMSn

 At time frame t, compute P(MS*n
t|O) :

 Backtrack the transitions to t1 and keep track of q  most likely starting
times (kts1, kts2,…, ktsq) during ktei-1 and ktei

 Likelihood of event instance i that ends at kte
i is defined as the

maximum value of P’(MSn
t|O) during (kte

i-1, kte
i)

(t1,…, tn)

AP(MS*n
t|O) = α0    max    P(O| MS0

t1 S1
<t1,t2> … Sn

<tn,t>) P(MSn
t )
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Simulation: Concatenation of
“Avoid” and “Go Through”

Sequence A3
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Segmenting “Avoid” and “Go Through”

72
91

154
173

Go Through [1]

7
29
51
64

Avoid[1]

28

Multi-Thread Event Modeling
 Global activities can be described by several actors performing

related actions ...
 Action threads are related by temporal/logical constraints
 May overlap in a non-linear fashion

 ... represented by an event graph
 Nodes are single-thread events
 Links indicate temporal relations represented by 

Interval-Based Temporal Logic
 “starts”, “meets”, “during”, “before”, “overlaps”, …
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“Theft at Phone Booth (PB)”

 Defines five action threads:
 Obj1 bring-in Obj2
 Obj1 use-phone
 Obj3 take Obj2
 Obj3 leave Obj1
 Obj2 taken-away-from Obj1

 Defines the appropriate temporal relations
 Obj1 bring-in Obj2 starts before Obj1 use-phone
 Obj3 take Obj2 occurs during Obj1 use-phone
 …
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Event Graph for “Theft at PB”

b: starts before
d: occurs during
ol: overlaps

Obj1 “bring_in”
Obj2

Obj3 “take_obj” 
Obj2

Obj3 “leave” 
Obj1

{b}

{ol}

Obj2 “taken_away”
from Obj1

{ol} or

Obj1 
“use_phone”

{d}
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Multi-Thread Event Recognition

 Individual event recognition is uncertain

 Several instances of events may be detected during a period
of time

 “approaches”, “stops”, “approaches”….

 Search for the event threads that best fit the required
“interval-based relations”

 How to evaluate the relations of event instances?

32

Evaluation of Temporal and Logical
Relations

 Temporal Relations are evaluated by combining the probabilities
of event instances subject to the corresponding temporal
constraint

 P(“A starts before B”) =
max   P(Am) P(Bn), if Start(Am) < Start(Bn),

 where “m” and “n” indicate instances of events

 Logical Relation “Or”  is evaluated by taking the maximum value,
i.e.

 P(“A or B”) =   max   (P(Am), P(Bn))
(m,n)A

(m,n)

A
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Inference of a Multi-Thread Event

 Propagate temporal constraints and probabilities of events along
forward temporal direction of event graph

 We need to consider “bring_in before use_phone”  before we
evaluate “take_away during use_phone”

 O(TPR+1) complexity if there are R event relations and P average
number of event instances with different starting times

Forward
Temporal
Direction 

Obj1 “bring_in”
Obj2

Obj3 “take_away” 
Obj2

Obj3 “leave” 
Obj1

{b}

{ol}

Obj2 “taken_way”
 from Obj1

{ol} or

Obj1 
“use_phone”

{d}
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Recognition of “Theft at PB”

Obj1 “bring-in”
Obj2

Obj3 “take_away” 
Obj2

Obj3 “leave” 
Obj1

{b}

{ol}

Obj2 
“taken_away”

 from Obj1

{ol} or

Obj1 
“make_call”

{d}
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Annotated Videos

 Needs standard interface for video content descriptions
 eXtended Markup Language (XML) interface can be defined for

event descriptions

 Event analysis results can be written in XML
 moving object and event descriptions
 allows the search for content of videos

 Information in XML files can be parsed and overlaid on the
original videos for visualization

36

Annotated “Theft at PB”
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Annotated “Object Transfer”

Obj1 “bring-in”
Obj2

Obj3 “take_away” 
Obj2

Obj3 “leave” 
Obj1

{b}

{ol}

Obj2 
“taken_away”

 from Obj1

{ol} or

38

Annotated “Assault”

Obj2 “clash”
Obj1

Obj1 “escape” 
Obj2

{m}

{ol}

Obj2 “follow”
Obj1

m: meet
ol: overlap
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Performance

 96.7% accuracy on discriminating competing single-thread
events of 30 objects (including human and vehicles)

 Small trajectory perturbation with Gauss noise
 Performance drops 5% on 40 simulated noisy sequences

corrupted with N(µ=0,σ=6.68cm), equivalent of human walking
speed variance

 Large variations simulating different execution styles (and some
tracking blunders)
 81% detection rate, 16% false alarms
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Computation Time

 P2-333 MHz, 128 MB RAM (approximately 1/8th of today’s
processing power)

 Computation time excludes motion detection and tracking
processes

0.46994104/15/2/34604Steal by
Blocking

0.7145383/11/3/16403Object
Transfer

10.6722.568/8/1/02402Assault

16.221838/3/0/12923Chekpnt D

43.62.538/3/0/11092Chekpnt A

fpsTime (sec)SE/CE/MT/CtxFramesNo of objsSequence
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Conclusion and Future Work

 Probabilistic event analysis is robust, but performance depends
on tracking accuracy

 Closely coordinated actions (e.g. dancing) may require
enhancements to the framework

 Object recognition remains a difficult problem
 A language formalism can be provided for defining events to

ease human communication
 Needs to extend high level interpretation logic
 Extension to multi-camera systems
 Integrates with other types of information

 Face, gestures, sounds, text, etc.


