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Goals and Motivation

Retrieves semantic information from video
Determines if it contains any interesting events
When and Where? (i.e., spatial and temporal dimensions)

Applications include Video Surveillance, Video Summarization,
Human-Machine Interaction, Intelligent Living Spaces




Monitoring of Vehicle Behaviors

“go through checkpoint”
Checkpoint is the area between the two tanks

Monitoring of Activities in a Crowd

Multiple actors and objects
Interaction among individual actions

“theft at phone-booth (PB)”




Challenges of Event Detection

Generic event representation
Effective and robust event recognition

Bridges the gap between pixel values and symbolic event
description

Computation of uncertainties
= imperfect tracking of “objects” in noisy videos
= similar activities must be distinguished

Variation in execution styles, temporal durations
Generic object recognition
Use and acquisition of scene and task context

Prior State of the Art

Action Recognition using Bayesian networks

Remagnino et al. (1998), Buxton & Gong (1995)

Only handles static or simple events
Action Recognition using HMMs

Ohya (1992), Starner (1998), Oliver et al. (2000)

Parameter space becomes too large in complex events
Syntactic Pattern Recognition of Actions

Pinhanez (1998), Ivanov & Bobick (2000)

Action units are assumed to be detected and segmented reliably




Large-Scale Event Detection System

Videos taken by a single, calibrated camera

Moving objects are observed from a distance

= Closely coordinated movements of body parts cannot be observed
reliably

= Blob shapes and trajectories are main sources of info
Scene and task contexts are given
= Interesting events to be detected are known and can be modeled
a priori
= Locations and types of scene objects are known
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Motion Detection & Tracking

Statistical background modeling
Pixel-wise mode computation
Detects moving regions by background subtraction
Tracks objects by making correspondence between moving regions
at different times
Moving regions may split due to low contrast, noise

Uses distance on ground plane to select blob correspondence across
timeframes

Filters split regions based on color distribution consistency

Tracking “Theft at PhoneBooth”

Ground tracks are noisy in low camera angle
Few pixels mistake projects to several meters




Event Classification

Single Thread Events
Simple Event
= Short, coherent unit of movement (e.g., “going toward”)
= Static poses (e.g., “stand”, “crouch”)
Composite Events
= Linearly ordered continuous sequence of events
= Long-term (normally longer than 30 frames)

Multiple Thread Events

Temporal and logical combination of two or more single
thread events

Object Class and Simple Event Modeling

S;: approaching
the object

[ getting closer ] [ heading}oward ] [ slowing down j

distance to direction orientation speed
object toward object of trajectory evolution

Object classes and simple events are modeled by a Bayesian
Network of sub-events or properties of shape and trajectory
of the actor

Recognized by computing P(S; t| O,) at each time frame




Inferring P(S;|0,)

Compute “evidence”: O,
Properties related to object trajectories
Properties related to bounding boxes

Compute P(S;|O,) from O, using Bayes’ rule
Assume conditional probabilities are Gaussian
= Estimate Gaussian parameters from 600 frames of event samples
Normalize P(S|O,) based on all alternative events (S, S, etc...)

Simple Event Analysis of
“Checkpoint A”

Simple event analysis of the car in sequence A

1:— approach zone
| = go_through zone
— stop_belore_ente

— leave zone
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Evolution of the output of Bayesian networks P(S;|O,) of four
simple events

The “zone” is shown by the quadrangle




Simple Event Analysis of
“Checkpoint D”

Simple event analysis of the car in sequence D
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Evolution of the output of Bayesian networks P(S;|O,) of four
simple events

Simple Events of “Take Object”

Simple event analysis of Obj4 with regard to Obj2 (luggage)
in sequence PhoneBooth(2
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Output of Bayesian networks P(S;|O,) of three sub-events of
“take object”




Composite Event Modeling

take S0: S1: approach Szclosstfel ltl;l
object fail the obj j
j the obj

Finite state automaton is used to represent long-term composite
events
Dynamics of composite event are modeled by the transitions
from one event state to another
Durations of event states can vary
Given the Bayesian probabilities of each event state computed for
a period of time, a sequence of event states must be segmented
appropriately

Recognition of Composite Event k
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Let S,...,S, be states of composite event kMS; 0=(0,,...,0,) be the
observations; kMS, be the fact that S, is the current state of \MS

kMS,, is recognized at frame t by computing

P("MS,[[O)=0, % P (O] kMS,tt S<t1i2> ... S <int>) P(KMS 1)
V(ty,..., t)

Note: we drop k in the next slides for clarity




Factoring P(O|MS_!) and P(MS, )

Under semi-HMM assumption that
O<tmtm+1>js independent of S <nt+>given S, _<tmtm+1>

probability of S,, making a transition to S, depends on the
duration of S,

we have:

P(MS,|0) =&y 2 P(MStt) P (011> MS,!1)
V (t,...,t,)
31‘0 P(ds1=t2't1) P(O<t1 ‘t2>|S1<t1 ‘t2>)

An n-1 P(dsn=t-tn) P(O<tnt?] S <tnt>)

* a,, - the probability of the path from S to S,

* P(d_ ) : the distribution of event duration of S,
« estimated using direct method, assuming a Gaussian
« uniform distributions for highly variable event durations

Computing P(MS, ! O)

Assuming that Otand S, are independent given S,

P(O<tmtn>|§, _ <tmtn>) can be computed from Bayesian probabilities as:

POSmr|Sy i) =By 1> _I1_P(SI0Y

t,<=t<=t,

=, 1L ___ POy
Betpty> = tm<mt<=t, P(S) isanormalizing constant

Let P’(MS,YO) be the normalized P(MS!|O);
Bel (S;iti+1>,O<titi+1>) be P(d=t.,-t) II P(S!|(OY);
G <=t<=1ty,
We have:

P’(MS{|0) =X P*(MS,!1| O<'4>) 1 a;,, Bel (S;<titi+1>, O<titi+t>)
Vt, . ty) l<=i<=n
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Computing P’(MS_!|O) Efficiently

Direct computation of P’(MS ! O) is O(nT")
Efficient recursive algorithm based on Dynamic Programming can
achieve O(nT)

P’(MS,1|0) =X P*(MSt1| O<'>) 1 a;,, Bel (S;<tti+1>, O<titi+1>)

V(t1,...,tn) 1<=i<=n

1

P’(Msnt|0) = z an,n-1 Be/ (Sn<tn’t>,o<t”‘t>) P’(Msn-1tn| O<1'tn>)
¥ (t

n

At frame t, for all S;, update Bel (S;<*>,0 <t*) with Bayesian probability
P(SH(OY); multiply it with P>(MS_,t] O<'t*) that is already computed

Analysis of “Go Through Checkpoint”

Simple event analysis of the car in sequence A
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Analysis of “Avoid the Checkpoint”

Simple event analysis of the car in sequence D
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Composite Event: “Take Object”

Simple event analysis of Obj4 with regard to Obj2 {luggage)
in sequence PhoneBooth(2
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TH-SHIMIM analysis of Obj4 "take_away" Obj2
In sequence PhoneBoothd2
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Segmenting Composite Events

Set a prob threshold to detect ending times ('t°,,...,t°) of event
instances 1,..,p of MS

At time frame t, compute P(MS* t|O) :

P(MS* |O) =0, max P(O] MSt S,<tt2> S <) P(MS, 1)
V(ty,..., t,)
Backtrack the transitions to t, and keep track of g most likely starting
times (K5, kt5,,..., k5;) during ke, and “te

Likelihood of event instance i that ends at “t¢, is defined as the
maximum value of P’(MS,!|O) during (kte, ,, kte))

Simulation: Concatenation of
“Avoid” and “Go Through”

Simple event analysis of the car in sequence A3
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Segmenting “Avoid” and “Go Through”
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Multi-Thread Event Modeling

Global activities can be described by several actors performing
related actions ...
Action threads are related by temporal/logical constraints
May overlap in a non-linear fashion

... represented by an event graph
Nodes are single-thread events

Links indicate temporal relations represented by

Interval-Based Temporal Logic

= “starts”, “meets”, “during”, “before”, “overlaps”, ...
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“Theft at Phone Booth (PB)”

Defines five action threads:
Obj1 bring-in Obj2
Obj1 use-phone
Obj3 take Obj2
Obj3 leave Obj1
Obj2 taken-away-from Obj1

Defines the appropriate temporal relations
Obj1 bring-in Obj2 starts before Obj1 use-phone
Obj3 take Obj2 occurs during Obj1 use-phone

Event Graph for “Theft at PB”

Obj1 “bring_in” b: starts before
Obj2 d: occurs during
ol: overlaps
'® @ l{b}

Obj1 {d)
o

A

Dbj3 “leave”Y Obj2 “taken_away’

from Obij1

Obj1

15



Multi-Thread Event Recognition

Individual event recognition is uncertain

Several instances of events may be detected during a period
of time

“approaches”, “stops”, “approaches”....

Search for the event threads that best fit the required
“interval-based relations”

How to evaluate the relations of event instances?

Evaluation of Temporal and Logical
Relations

Temporal Relations are evaluated by combining the probabilities
of event instances subject to the corresponding temporal
constraint
P(“A starts before B”) =
max P(A,) P(B,), if Start(A,) < Start(B,),
¥ (m,n)
where “m” and “n” indicate instances of events

Logical Relation “Or” is evaluated by taking the maximum value,
i.e.
P(“A orB”)= max (P(An), P(B,))
v (m,n)
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Inference of a Multi-Thread Event

Obj1 “bring_in”
Obj2

{b}

Forward Obj1 (UPOD;3 “tak 2
j i3 “take_away

fomoe | Q<

Direction

v Obj3 “leave™y Obj2 “taken_way”
Obj1 from Obj1

Propagate temporal constraints and probabilities of events along
forward temporal direction of event graph
We need to consider “bring_in before use_phone” before we
evaluate “take_away during use_phone”

O(TPR*1) complexity if there are R event relations and P average
number of event instances with different starting times

Recognition of “Theft at PB”

Obj1 Obj3 “take_away”
“make_call’, Obj2

Recognition of multi-thread events of
"steal_by_phoneBooth® in sequence PhoneBooth(2

"Objl bring [in Ohj2", start tefors, "Objl use_phone" from Obj1
"Cibijd take_faway Obj2", duving "Chil use_phane"
"Obid take_way Obj2", overlap "Objd leave Obj1"
"Objd take Rway Obj2", owerlap, "Obj2 taken_away from Obj1"

Probability
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Annotated Videos

Needs standard interface for video content descriptions

eXtended Markup Language (XML) interface can be defined for
event descriptions

Event analysis results can be written in XML
moving object and event descriptions
allows the search for content of videos

Information in XML files can be parsed and overlaid on the
original videos for visualization

Annotated “Theft at PB”
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Annotated “Object Transfer”

Obj1 “bring-in”

Obj3 “take_away”
Obj2

Obj3 “leave’
Obj1 “taken_away”

from ODbj1

Annotated “Assault”

Obj2 “clash”
Obj1
{m}l

Obj1 “escape”
Obj2

{ol}

Obj2 “follow”
Obj1 .

m: meet
ol: overlap
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Performance

96.7% accuracy on discriminating competing single-thread
events of 30 objects (including human and vehicles)

Small trajectory perturbation with Gauss noise

Performance drops 5% on 40 simulated noisy sequences
corrupted with N(u=0,6=6.68cm), equivalent of human walking
speed variance

Large variations simulating different execution styles (and some
tracking blunders)

81% detection rate, 16% false alarms

Computation Time

P2-333 MHz, 128 MB RAM (approximately 1/8th of today’s
processing power)

Computation time excludes motion detection and tracking
processes

Sequence No of objs Frames SE/CE/MT/Ctx Time (sec) fps
Chekpnt A 2 109 38/3/0/1 25 43.6
Chekpnt D 3 292 38/3/0/1 18 16.22
Assault 2 240 68/8/1/0 22,5 10.67
Object 3 640 83/11/311 453 0.71
Transfer

Steal by 4 460 104/15/2/3 994 0.46
Blocking
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Conclusion and Future Work

Probabilistic event analysis is robust, but performance depends
on tracking accuracy

Closely coordinated actions (e.g. dancing) may require
enhancements to the framework

Object recognition remains a difficult problem

A language formalism can be provided for defining events to
ease human communication

Needs to extend high level interpretation logic

Extension to multi-camera systems

Integrates with other types of information
Face, gestures, sounds, text, etc.

21



