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A Walk through
"Bildverarbeitung WS 2007/08"

2

Definition of Image Understanding

Image understanding is the task-oriented reconstruction and
interpretation of a scene by means of images

Image understanding is the task-oriented reconstruction and
interpretation of a scene by means of images

scene: section of the real world
stationary (3D) or moving (4D)

image: view of a scene
projection, density image (2D)
depth image (2 1/2D)
image sequence (3D)

reconstruction computer-internal scene description
and interpretation: quantitative + qualitative + symbolic

task-oriented: for a purpose, to fulfill a particular task
context-dependent, supporting actions of an agent
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Technical Colour Models
RGB colour model

R

G

B

magenta
cyan

yellow
Typical discretization:
8 bits per colour dimension
=>  16,77,216 colours

CMY colour model

C 1 R
M    = 1      - G
Y 1 B

HSI colour model

Hue:

H  = Θ if B ≤ G
360 - Θ if B > G

  1/2 [(R-G) + (R-B)]
Θ  = cos-1

  [(R-G)2 + (R-B)(G-B)]1/2

Saturation:
      3

S  = 1 -        [min (R, G, B)]
(R + G + B)

Intensity:
I  = 1/3 (R + G + B)

4

Sampling Theorem

Shannon´s Sampling Theorem:

A bandlimited function with bandwidth W can be exactly
reconstructed from equally spaced samples, if the sampling
distance is not larger than 1

2W

bandwidth = largest frequency contained in signal
(=> Fourier decomposition of a signal)

Analogous theorem holds for 2D signals with limited spatial
frequencies Wx and Wy
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Perspective Projection Geometry

Projective geometry relates the coordinates of a point in a scene to the
coordinates of its projection onto an image plane.
Perspective projection is an adequate model for most cameras.

•

•
•

x
y

xp
yp

zp = f

v = x
y
z

image plane

optical center

x f
 zxp =

y f
 zyp=

scene pointimage point

Projection equations:

focal 
distance f

z = optical axis

Vp = xp
yp
zp
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Connectivity in Digital Images

Connectivity is an important property of subsets of pixels. It is based
on adjacency (or neighbourhood):

Pixels are 4-neighbours
if their distance is D4 = 1

Pixels are 8-neighbours
if their distance is D8 = 1

A path from pixel P to pixel Q is a sequence of pixels beginning at
Q and ending at P, where consecutive pixels are neighbours.
In a set of pixels, two pixels P and Q are connected, if there is a
path between P and Q with pixels belonging to the set.
A region is a set of pixels where each pair of pixels is connected.

all 4-neighbours of
center pixel

all 8-neighbours of
center pixel
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Principle of Greyvalue Interpolation

• •
• •

• •

•
•

••
•

•

••
• •Greyvalue interpolation = computation of

unknown greyvalues at locations (u´v´) from
known greyvalues at locations (x´y´)

Two ways of viewing interpolation in the context of geometric
transformations:

A Greyvalues at grid locations (x y) in old image are placed at
corresponding locations (x´y´) in new image: g(x´y´) = g(T(x y))
=> interpolation in new image

B Grid locations (u´v´) in new image are transformed into
corresponding locations (u v) in old image: g(u v) = g(T-1(u´v´))
=> interpolation in old image

We will take view B:
Compute greyvalues between grid from greyvalues at grid locations.

8

Global Image Properties

Global image properties refer to an image as a whole rather than
components. Computation of global image properties is often required
for image enhancement, preceding image analysis.
We treat

•   empirical mean and variance
•   histograms
•   projections
•   cross-sections
•   frequency spectrum
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Median Filter
Median of a distribution P(x):   xm such that P(x < xm) = 1/2

Median Filter:
ˆ g ij =  max a with gk ∈D and | {gk < a}|< |D|

2

1. Sort pixels in D according to greyvalue
2. Choose greyvalue in middle position

Example: 11 14 15

13 12 25

15 19 26

11
12
13
14
15
15
19
25
26

greyvalue of center pixel
of region is set to 15

Median Filter reduces influence of outliers in either direction!
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Discrete Fourier Transform (DFT)

Guv =
1

MN
 gmn

n=0

N−1

∑
m=0

M−1

∑ e
−2πi( mu

M
+nv

N
)

gmn =  Guv
v=0

N−1

∑
u=0

M −1

∑ e
2πi( mu

M
+nv

N
)

Transform is based on periodicity
assumption

Discrete Fourier Transform: Inverse Discrete Fourier Transform:

=> periodic continuation may
cause boundary effects

for   u = 0 ... M-1, v = 0 ... N-1 for   m = 0 ... M-1, n = 0 ... N-1

Notation for computing the Fourier Transform:

Guv = F{ gmn }

gmn = F-1{ Guv }

Computes image representation as a sum of sinusoidals.
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Filtering in the Frequency Domain
A filter transforms a signal by modifying its spectrum.

G(u, v) = F(u, v) H(u, v)
F Fourier transform of the signal
H frequency transfer function of the filter
G modified Fourier transform of signal

• low-pass filter low frequencies pass, high frequencies are
attenuated or removed

• high-pass filter high frequencies pass, low frequencies are
attenuated or removed

• band-pass filter frequencies within a frequency band pass,
other frequencies below or above are 
attenuated or removed

Often (but not always) the noise part of an image is high-frequency and
the signal part is low-frequency. Low-pass filtering then improves the
signal-to-noise ratio.

12

Convolution Using the FFT

Convolution in the spatial domain may be performed more efficiently
using the FFT.

′ g ij =  gmn
n=0

N -1
∑

m= 0

M−1
∑ hi−m,j−n (MN)2 operations needed

Using the FFT and filtering in the frequency domain:

gmn Guv Guv´ gmn´
FFT Huv FFT-1

MN log(MN)        MN MN log(MN) # of operations

Example with M = N = 512:
• straight convolution needs ~ 1010 operations
• convolution using the FFT needs ~107 operations
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Illustration of Minimum-loss
Dimension Reduction

Using the Karhunen-Loève transform data compression is achieved by
• changing (rotating) the coordinate system
• omitting the least informative dimension(s) in the new coodinate system

Example:

x1

x2

• ••
•

• • •
• •

••
•

•

•
•

x1

x2

• • • •• •••••
• •• •

•

y1
y2

• •
••• •

•

•
•

•
• • •
• • y1

y2

• • • •• ••••• • •• •• y1

14

Principle of Baseline JPEG

FDCT Quantizer Entropy Encoder

Encoder

table
specifications

table
specifications

8 x 8 blocks

source image
data

compressed
image data

(Source: Gibson et al., Digital Compression for Multimedia, Morgan Kaufmann 98)

• transform RGB into YUV coding, subsample color information
• partition image into 8 x 8 blocks, left-to-right, top-to-bottom
• compute Discrete Cosine Transform (DCT) of each block
• quantize coefficients according to psychovisual quantization tables
• order DCT coefficients in zigzag order
• perform runlength coding of bitstream of all coefficients of a block
• perform Huffman coding for symbols formed by bit patterns of a block 
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Segmentation

Segmenting the image into image elements which may correspond to
meaningful scene elements

high-level interpretations

objects

scene elements

image elements

raw images

Typical results
of first
segmentation
steps

Example:
Partitioning an
image into
regions which
may correspond
to objects

16

Representing Regions
A region is a maximal 4- (or 8-) connected set of pixels.

Methods for digital region representation:
• grid occupancy

- labelling
- run-length coding
- quadtree coding
- cell sets

• boundary description
- chain code
- straight-line segments, polygons
- higher-order polynomials

Note that discretizations of an analog region are not shift or rotation invariant:

• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •
• • • •
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Chain Code
Chain code represents boundaries by "chaining" direction arrows between
successive boundary elements.

0
1

23
4
5

6 7

Arbitrary choice of starting point, chain
code can be represented e.g. by
{456671123}
Normalization by circular shift until the
smallest integer is obtained:
{112345667}

Chain code for 8-connectivity:

0

1

2

3

Chain code for 4-connectivity:

Arbitrary starting point:
{22233330010111}
Normalized:
{00101112223333}
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Canny Edge Detector (1)
Optimal edge detector for step edges corrupted by white noise.
Optimality criteria:
• Detection of all important edges and no spurious responses
• Minimal distance between location of edge and actual edge
• One response per edge only

1. Derivation for 1D results in edge detection filter which can be
effectively approximated (< 20% error) by the 1rst derivative of a
Gaussian smoothing filter.

2. Generalization to 2D requires estimation of edge orientation:

  
n =

∇ (f • g)
∇ (f • g)

n normal perpendicular to edge
f Gaussian smoothing filter
g greyvalue image

Edge is located at local maximum of g convolved with f in direction n:

  
∂2

∂n2 f • g = 0 "non-maximal suppression"
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Canny Edge Detector (2)
Algorithm includes
- choice of scale σ
- hysteresis thresholding to avoid streaking (breaking up edges)
- "feature synthesis" by selecting large-scale edges dependent on

lower-scale support

1. Convolve image g with Gaussian filter f of scale σ 
2. Estimate local edge normal direction n for each point in the image
3. Find edge locations using non-maximal suppression
4. Compute magnitude of edges by
5. Threshold edges with hysteresis to eliminate spurious edges
6. Repeat steps (1) through (5) for increasing values of σ  
7. Aggregate edges at multiple scales using feature synthesis

  ∇ (f • g)

20

Grouping
To make sense of image elements, they first have to be grouped into
larger structures.

Example:  Grouping noisy edge elements into a straight edge

Important methods:
• Fitting
• Clustering
• Hough Transform
• Relaxation

Essential problem:
Obtaining globally valid results by
local decisions

-  locally compatible
-  globally incompatible
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Example for Straight Line Fitting by
Eigenvector Analysis

•
•

•
•

•
• •

• x

y

What is the best straight-line
approximation of the contour?

Given points: { (-5 0) (-3 0) (-1 -1) (1 0) (3 2) (5 3) (7 2) (9 2) }

Scatter matrix:  S11 = 168  S12 = S21 = 38  S22 = 14

Eigenvalues:  λ1 = 176,87  λ2 = 5,13

Straight line equation: y = 0,23 x + 0,54

?

Center of gravity:  mx = 2  my = 1  

•

Direction of straight line:  ry/rx = 0,23

22

Hough Transform (1)
Robust method for fitting straight lines, circles or other geometric figures
which can be described analytically.

Given: Edge points in an image
Wanted: Straight lines supported by the edge points

An edge point (xk, yk) supports all straight lines y = mx + c
with parameters m and c such that yk = mxk + c.
The locus of the parameter combinations for straight
lines through (xk, yk) is a straight line in parameter space.

m

c

yk/xk

yk

• Provide accumulator array for quantized straight line parameter
combinations

• For each edge point, increase accumulator cells for all parameter
combinations supported by the edge point

• Maxima in accumulator array correspond to straight lines in the image

Principle of Hough transform for straight line fitting:
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Hough Transform (2)
For straight line finding, the parameter pair (r, θ) is commonly used
because it avoids infinite parameter values:

xkcosθ + yksinθ = r
x

r

θ

(xk, yk)

x

y

Each edge point (xk, yk) corresponds
to a sinusoidal in parameter space:

π 2π
θ

r

Important improvement by exploiting direction information at edge points: 

(xk, yk, ϕ) xkcosθ + yksinθ = r   restricted to   ϕ-δ ≤ θ ≤ ϕ+δ

direction tolerancegradient direction

24

Simple 2D Shape Features
For industrial recognition tasks it is often required to distinguish
• a small number of different shapes
• viewed from a small number of  different view points
• with a small computational effort.

In such cases simple 2D shape features may be useful, such as:
- area
- boxing rectangle
- boundary length
- compactness
- second-order momentums
- polar signature
- templates

Features may or may not have invariance properties:
- 2D translation invariance
- 2D rotation invariance
- scale invariance
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Basic Terminology for
Pattern Recognition

feature extraction

feature vector

object

classification in
feature space

object class

K classes ω1 ... ωK

N dimension of feature space
xT = [x1 x2 ...  xN] feature vector
yT = [y1 y2 ...  yN] prototype
(feature vector with known class membership)
yi

(k) i-th prototyp of class k
Mk number of prototypes for class k
gk(x) discriminant function for class k

Problem:
Determine gk(x) such that

gk(x) > gj(x),    ∀ x eωK     ∀  k ≠ j

26

Minimum Squared Error
New criterion function for all samples:

Find a such that  aTyi = bi  with bi = some positive constant  

In matrix notation:   Ya = b    with Y = y1
T  

y2
T

...

yM
T

and yi
T = [ yi1 ... yiN ]

In general, M >> N and Y-1 does not exist, hence a = Y-1b is no solution.
Classical solution technique: Minimize squared error criterion: 

Js(a) = ||Ya - b||2 = Σ (aTyi - bi)2

Closed-form solution by setting the gradient equal to 0.

„Js = 2YT(Ya - b) = 0    =>   a = (YTY)-1YTb    if   (YTY)-1YT is nonsingular

pseudoinverse of Y

� 

∇
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Statistical Decision Theory

Generating decision functions from a statistical characterization of classes
(as opposed to a characterization by prototypes)

Advantages:
1. The classification scheme may be designed to satisfy an objective

optimality criterion:
Optimal decisions minimize the probability of error.

2. Statistical descriptions may be much more compact than a collection
of prototypes.

3. Some phenomena may only be adequately described using statistics,
e.g. noise.

28

General Framework for
Bayes Classification

Statistical decision theory which minimizes the probability of error for
classifications based on uncertain evidence

ω1 ... ωK K classes
P(ωk) prior probability that an object of class k will be observed
x = [x1 ... xN] N-dimensional feature vector of an object
p(x|ωk) conditional probability ("likelihood") of observing x given

that the object belongs to class ωK

P(ωk|x) conditional probability ("posterior probability") that an 
object belongs to class ωK given x is observed

Bayes decision rule:
Classify given evidence x as class ω´ such that ω´ minimizes the
probability of error  P(ω ≠ ω´| x)
   => Choose ω´ which maximizes the posterior probability  P(ω | x)
gi(x) = P(ωi|x) are discriminant functions. 



  

 15

29

Motion Analysis

Motion detection
Register locations in an image sequence which have change due to motion
Moving object detection and tracking
Detect individual moving objects, determine and predict object trajectories,
track objects with a moving camera
Derivation of 3D object properties
Determine 3D object shape from multiple views ("shape from motion")

Motion analysis of digital images is based on a temporal sequence of
image frames of a coherent scene.
"sparse sequence"    => few frames, temporally spaced apart,

considerable differences between frames
"dense sequence"      => many frames, incremental time steps,

incremental differences between frames
video          => 50 half frames per sec, interleaving,

line-by-line sampling

30

Kalman Filters (1)
A Kalman filter provides an iterative scheme for (i) predicting an event and
(ii) incorporating new measurements.

prediction measurement

Assume a linear system with observations depending linearly on the
system state, and white Gaussian noise disturbing the system evolution
and the observations:

xk+1 = Akxk + wk
zk = Hkxk + vk

xk quantity of interest ("state") at time k
Ak model for evolution of xk
wk zero mean Gaussian noise with

covariance Qk
zk observations at time k
Hk relation of observations to state
vk zero mean Gaussian noise with

covariance Rk
Often, Ak, Qk, Hk and Rk are constant.

What is the best estimate of xk
based on the previous estimate
xk-1 and the observation zk?
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Optical Flow Constraint Equation
Optical flow is the displacement field of surface elements of a scene during
an incremental time interval dt ("velocity field").

Assumptions:
• Observed brightness is constant over time (no illumination changes)
• Nearby image points move similarly (velocity smoothness constraint) 
For a continuous image g(x, y, t) a linear Taylor series approximation gives

g(x+dx, y+dy, t+dt) ≈ g(x, y, t) + gxdx + gydy + gtdt
For motion without illumination change we have

g(x+dx, y+dy, t+dt) = g(x, y, t)
Hence gxdx/dt + gydy/dt = gxu + gyv = -gt        u, v velocity components
 

gxu + gyv = -gt optical flow constraint equation

gx ≈ Δg/Δx,  gy ≈ Δg/Δy,  gt ≈ Δg/Δt  may be estimated from the spatial and
temporal surround of a location (x, y), hence the optical flow constraint
equation provides one equation for the two unknowns u and v.

32

3D Motion Analysis Based on
2D Point Displacements

2D displacements of points
observed on an unknown
moving rigid body may
provide information about
- the 3D structure of the points
- the 3D motion parameters

Cases of interest:
• stationary camera, moving object(s)
• moving camera, stationary object(s)
• moving camera, moving object(s)

camera motion
parameters may
be known

Rotating cylinder experiment
by S. Ullman (1981)
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Essential Matrix
Geometrical constraints derived from 2 views of a point in motion

z

x

y

• vm • vm+1Rm
tm

•

• motion between image m and m+1
may be decomposed into
1) rotation Rm about origin of
coordinate system (= optical center)
2) translation tm

• observations are given by direction
vectors nm and nm+1 along projection
rays

Rmnm, tm and nm are coplanar: [tm x Rmnm]T nm+1 = 0

After some manipulation: nm
T Em nm+1 = 0             E = essential matrix

with Em = and Rm =

nm

nm+1

tmxr1 tmxr2 tmxr3

|

|

|

|

|

|
r1  r2  r3

|

|

|

|

|

|

34

Principle of Shape from Shading

Physical surface properties, surface orientation, illumination and viewing
direction determine the greyvalue of a surface patch in a sensor signal.
For a single object surface viewed in one image, greyvalue changes are
mainly caused by surface orientation changes.
The reconstruction of arbitrary surface shapes is not possible because
different surface orientations may give rise to identical greyvalues.
Surface shapes may be uniquely reconstructed from shading information if
possible surface shapes are constrained by smoothness assumptions.

See "Shape from Shading" (B.K.P. Horn, M.J. Brooks, eds.), MIT Press 1989

a: patch with known orientation
b, c: neighbouring patches with similar orientations
b´: radical different orientation may not be

neighbour of a

Principle of incremental procedure for surface shape reconstruction:

a
b

c
b´
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Generality Assumption
Assume that 

-  viewpoint
-  illumination
-  physical surface properties

are general, i.e. do not produce coincidental structures in the image.

Example:  Do not interpret
this figure as a 3D
wireframe cube, because
this view is not general.

General
view:

The generality assumption is the basis for several specialized
interpretation methods, e.g.

-  shape from texture
-  shape from shading
...
-  "shape from X"

36

3D Line Orientation from
Vanishing Points

From the laws of perspective
projection:
The projections of 3D parallel
straight lines intersect in a
single point, the vanishing
point.

Assume that more than 2
straight lines do not intersect in
a single point by coincidence

If more than 2 straight lines
intersect, assume that they are
parallel in 3D
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Object Recognition by
Relational Matching

Principle:
• construct relational model(s) for object class(es)
• construct relational image description
• compute R-morphism (best partial match) between image and

model(s)
• top-down verification with extended model

A
B

C
D

E

F
G

r1
r2

r1

r1

r3

r3

r2

r4

r1r2

r4

a

b

c

d e

f

g

h

i

j
r1

r2
r3

r1

r2

r3

r1

r4

r4

r1

r2
r2

r2
r3

r3

r1
r1

r1
model image

38

Partonomy of Object Parts

shaft dimensioning

cylinder dimensioning arrow

symmetry 
line

closed 
contour

auxiliary
dimensioning line

double 
arrow

line arrow text

graphic primitives
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SIFT Features Summary

• SIFT features are reasonably invariant to rotation, scaling, and
illumination changes.

• They can be used for matching and object recognition (among other
things).

• Robust to occlusion: as long as we can see at least 3 features from
the object we can compute the location and pose.

• Efficient on-line matching: recognition can be performed in close-to-
real time (at least for small object databases).

40

Implicit Shape Model - Recognition (2)
Interest Points Matched Codebook Entries Probabilistic Voting

Voting Space
(continuous)

Backprojection
of Maxima

Backprojected
Hypotheses

Refined Hypotheses
(uniform sampling)

Segmentation

• Spatial feature configurations
• Interleaved object recognition

and segmentation
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Basic Building Blocks for
High-level Scene Interpretation

geometrical
scene description (GSD)

image sequences of dynamic scenes

high-level 
scene interpretations

scene models

vision memory

memory
templates

context
information

42

Occurrence Models

• An occurrence model describes a class of occurrences by
- properties
- sub-occurrences (= components of the occurrence)
- relations between sub-occurrences

• A primitive occurrence model consists of
- properties
- a qualitative predicate

• Each occurrence has a begin and end time point

Basic ingredients: • relational structure
• taxonomy
• partonomy
• spatial relational language
• temporal relational language
• object appearance models
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Model-based Interpretation
place-cover

plate

move

plate-transport 

transport

plate-view

agent cup

cup-view

cup-transport

agent-view

agent-move

move1move2

place-cover

transport2 transport1

plate1agent1

viewtrack

track2 track1

view2 view1

move3move4

cup1

track3track4

agent2

view3view4

track4 track3

part-of

is-a

instance
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Example of an Automatically Generated
Traffic Scene Description

DIE SZENE ENTHAELT DREI BEWEGTE OBJEKTE: ZWEI PKWS UND EINEN LKW.

EIN GELBER PKW FAEHRT IN RICHTUNG HALLERPLATZ. DABEI UEBERHOLT ER DEN LKW AUF DER
SCHLUETERSTRASSE. DER GELBE PKW RAST VON DER ALTEN POST VOR DAS GELBE HAUS. ER ERREICHT
DIE HARTUNGSTRASSE. ER HAELT AN. ER HAELT.

EIN SCHWARZER PKW ERREICHT DIE SCHLUETERSTRASSE. ER NAEHERT SICH DEM LKW VON DER ALTEN
POST. DER SCHWARZE PKW FAEHRT IN RICHTUNG HALLERSTRASSE.

DER LKW FAEHRT VON DER ALTEN POST VOR DAS GRUENE HAUS. DABEI STOPPT ER VOR IHM. ER HAELT.
ER FAEHRT IN RICHTUNG DAMMTOR WEITER. ER ENTFERNT SICH VON DEM GELBEN PKW. DER LKW HAELT
AN. ER HAELT.
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Causality Graph
Conditional dependencies (causality relations) of random variables define
partial order.
Representation as a directed acyclic graph (DAG):

X7

X8

X6

X4

X5 X3

X1

X2

P(X1, X2, X3, ... , X8) = 
P(X1 | X2, X3, X4) • P(X2) • P(X3 | X4, X5) • P(X4 | X6) • P(X5 | X6) • P(X6 | X7X8) • P(X7) • P(X8)

For any DAG, we obtain the JPD as follows:
Pa(Xi) parents of node Xi

P(X1 ... XN) = Π P(Xi | Pa(Xi))i

46

Example: Traffic Behaviour of Pedestrians

X4:
pedestrian
inattentive

X3:
 car comes

X2:
pedestrian
light red

X5:
pedestrian looks

on street

X1:
pedestrian

enters street

X6: 
traffic light red

Conditional probability table for each node must be known

 P(X1 | X2, X3, X4, X5)     P(X2 | X6)       P(X3 | X6)       P(X4) P(X5)    P(X6)

X1 X2 X3 X4 X5 P
T T T T T 0.3
F T T T T 0.7
T F T T T 0.9
F F T T T 0.1
• • • • • •• • • • • •• • • • • •

X2 X6 P
T T 0.2
F T 0.8
T F 1.0
F F 0.0

X3 X6 P
T T 0.01
F T 0.99
T F 0.6
F F 0.4

X6 P
T 0.7
F 0.3

X4 P
T 0.1
F 0.9

X5 P
T 0.7
F 0.3
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Computing Inferences
We want to use a Bayes Net for probabilistic inferences of the following kind:

Given a joint probability P(X1, ... , XN) represented by a Bayes Net,
and evidence Xm1

=am1
, ... , XmK

=amK
 for some of the variables, what is

the probability P(Xn= ai | Xm1
=am1

, ... , XmK
=amK

) of an unobserved
variable to take on a value ai ?

P(Xn= ai, Xm1
=am1

, ... , XmK
=amK

)
P(Xn= ai | Xm1

=am1
, ... , XmK

=amK
) =

 P(Xm1
=am1

, ... , XmK
=amK

)

In general this requires
- expressing a conditional probability by a quotient of joint probabilities

- determining partial joint probabilities from the given total joint probability
by summing out unwanted variables

P(Xm1
=am1

, ... , XmK
=amK

) =      Σ      P(Xm1
=am1

, ... , XmK
=amK

, Xn1
, ... , XnK

)
Xn1

, ... , XnK

48

What Kind of Bayes Net is a HMM?

X1 X2 X3 X4

•••
Y1 Y2 Y3 Y4 •••

states

observations

Bayes Net structure:

Finding most probable paths:
X1 X2 X3 X4

Y1 Y2 Y3 Y4

hidden states

given observations

P(X = a | Y = b)  =  ?

Evaluating likelihood of model:

X1 X2 X3 X4

Y1 Y2 Y3 Y4

hidden states

given observations

P(Y = b | model)  =  ?
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How come, you see
what you see?


