A Walk through "Bildverarbeitung WS 2007/08"

Statistical do	cision theory which minimizes the probability of error for
classification	is based on uncertain evidence
	Kalana
ω ₁ ω _κ	K classes
Ρ(ω _k)	prior probability that an object of class k will be observed
$\underline{\mathbf{x}} = [\mathbf{x}_1 \dots \mathbf{x}_N]$	N-dimensional feature vector of an object
ວ(<u>x</u> lω _k)	conditional probability ("likelihood") of observing $\underline{\mathbf{x}}$ given
	that the object belongs to class ω_{K}
P(ω _k l <u>x</u>)	conditional probability ("posterior probability") that an
	object belongs to class $\omega_{\!K}$ given \underline{x} is observed
Bayes decisi	on rule:
Classify give	n evidence x as class ω such that ω minimizes the
probability of	ferror P(ω≠ώlx)
	∞ which maximizes the posterior probability $P(\alpha \mid x)$
$\mathbf{g}_{i}(\mathbf{x}) = \mathbf{P}(\mathbf{\omega}_{i} \mathbf{x})$	are discriminant functions.

Motion Analysis

Motion analysis of digital images is based on a temporal sequence of image frames of a coherent scene.

"sparse sequence"	=> few frames, temporally spaced apart, considerable differences between frames
"dense sequence"	=> many frames, incremental time steps, incremental differences between frames
video	=> 50 half frames per sec, interleaving, line-by-line sampling

Motion detection

Register locations in an image sequence which have change due to motion

Moving object detection and tracking

Detect individual moving objects, determine and predict object trajectories, track objects with a moving camera

Derivation of 3D object properties

Determine 3D object shape from multiple views ("shape from motion")

29

Basic ingredients:	relational structure
	• taxonomy
	partonomy
	spatial relational language
	 temporal relational language
• An occurrence	object appearance models model describes a class of occurrences by
An occurrence - properties - sub-occurr - relations b	object appearance models model describes a class of occurrences by rences (= components of the occurrence) etween sub-occurrences
 An occurrence properties sub-occurr relations b A primitive occ properties 	object appearance models model describes a class of occurrences by rences (= components of the occurrence) etween sub-occurrences currence model consists of

Computing Inferences

We want to use a Bayes Net for probabilistic inferences of the following kind:

Given a joint probability $P(X_1, ..., X_N)$ represented by a Bayes Net, and evidence $X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K}$ for some of the variables, what is the probability $P(X_n=a_i | X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K})$ of an unobserved variable to take on a value a_i ?

In general this requires

- expressing a conditional probability by a quotient of joint probabilities

$$P(X_n = a_i \mid X_{m_1} = a_{m_1}, \dots, X_{m_K} = a_{m_K}) = \frac{P(X_n = a_i, X_{m_1} = a_{m_1}, \dots, X_{m_K} = a_{m_K})}{P(X_{m_1} = a_{m_1}, \dots, X_{m_K} = a_{m_K})}$$

- determining partial joint probabilities from the given total joint probability by summing out unwanted variables

$$P(X_{m_1} = a_{m_1}, \dots, X_{m_K} = a_{m_K}) = \sum_{X_{n_1}, \dots, X_{n_K}} P(X_{m_1} = a_{m_1}, \dots, X_{m_K} = a_{m_K}, X_{n_1}, \dots, X_{n_K})$$
47

