Definition of Image Understanding		
mage understanding is the task-oriented reconstruction and nterpretation of a scene by means of images		
"scene":	section of the real world stationary (3D) or moving (4D)	
"image":	view of a scene projection, density image (2D) depth image (2 1/2D) image sequence (3D)	
"reconstruction and interpretation":	computer-internal scene description quantitative + qualitative + symbolic	
"task-oriented":	for a purpose, to fulfil a particular task context-dependent, supporting actions of an agent	

Abstraction Levels for the Description of Computer Vision Systems

Knowledge level

What knowledge or information enters a process? What knowledge or information is obtained by a process?

What are the laws and constraints which determine the behavior of a process?

Algorithmic level

How is the relevant information represented?

What algorithms are used to process the information?

Implementation level

What programming language is used?

What computer hardware is used?

Formally, a continuous function f(t) with bandwidth W can be exactly reconstructed using <u>sampling functions</u> $s_i(t)$:

23

sample values

An analogous equation holds for 2D.

In practice, image functions are generated from samples by interpolation.

Comparis	on of the Sam	oling Theorems
oompano		
	Shannon's	Shape Preserving
	Sampling Theorem	Sampling Theorem
necessary image property	bandlimited with	r-regular
	bandwidth W	
equation	$\left(\frac{r'}{\sqrt{2}}\right) d < \frac{1}{2W}$	<i>r</i> ′< <i>r</i>
reconstructed	identical to original image	same shape as the
image		original image
prefiltering	band-limitation:	regularization:
	efficient algorithms	unsolved problem
	(but shapes may change!)	
2D sampling grid	rectangular grid	arbitrary grids
dimension of definition	1D	2D
	(generalizable to n-D)	(partly generalizable to n-D)

$$d_q^2 = \sum_{n=0}^{N-1} \int_{z_n}^{z_{n+1}} (z-q_n)^2 p(z) dz$$

Minimizing by setting the derivatives zero:

$$\frac{\delta}{\delta z_n} d_q^2 = (z_n - q_{n-1})^2 p(z_n) - (z_n - q_n)^2 p(z_n) = 0 \text{ for } n = 1 \dots N-1$$

$$\frac{\delta}{\delta q_n} d_q^2 = -2 \int_{z_n}^{z_{n+1}} (z - q_n) p(z) dz = 0 \text{ for } n = 0 \dots N-1$$

Thresholding is often applied to digital images in order to isolate parts of the image, e.g. edge areas.

