
1

1

Perspective Projection Transformation

x
y
z

xp´´
yp´´

Where does a point of a scene appear in an image?

?

Transformation in 3 steps:

1. scene coordinates => camera coordinates

2. projection of camera coordinates into image plane

3. camera coordinates => image coordinates

Perspective projection equations are essential for Computer Graphics.
For Image Understanding we will need the inverse: What are possible
scene coordinates of a point visible in the image? This will follow later.

2

Perspective Projection in Independent
Coordinate Systems

It is often useful to describe real-world points, camera geometry and
image points in separate coordinate systems. The formal description of
projection involves transformations between these coordinate systems.

•
•

•

optical
center v0

optical
axis

scene point v = x
y
z

vp = xp
yp
zp

image point

z

x

y

z´

y´

x´ x´´

y´´

vp´ = xp´
yp´
zp´

vp´´= xp´´
yp´´

scene (world)
coordinates

camera
coordinates

image
coordinates

2

3

3D Coordinate Transformation (1)
The new coordinate system is specified by a translation and rotation
with respect to the old coordinate system:

v´= R (v - v0) v0 is displacement vector
R is rotation matrix

R may be decomposed into
3 rotations about the
coordinate axes:
R = Rx Ry Rz

1
0
0

0
cos α

 − sin α

0
sin α
cos α

Rx =

0
1
0

cos β
0

 sin β

- sin β
0

cos β

Ry =

0
0
1

cos γ
 − sin γ

0

sin γ
cos γ

0

Rz =

If rotations are performed in the above
order:
1) γ = rotation angle about z-axis
2) β = rotation angle about (new) y-axis
3) α = rotation angle about (new) x-axis

 ("tilt angle", "pan angle", and "nick
angle" for the camera coordinate
assignment shown before)

Note that these matrices
describe coo transforms
for positive rotations of
the coo system.

4

3D Coordinate Transformation (2)
By multiplying the 3 matrices Rx, Ry and Rz, one gets

 cos β cos γ cos β sin γ - sin β

 sin α sin β cos γ − cos α sin γ sin α sin β sin γ + cos α cos γ sin α cos β

 cos α sin β cos γ + sin α sin γ cos α sin β sin γ − sin α cos γ cos α cos β

R =

For formula manipulations, one tries to avoid the trigonometric functions
and takes

R = r11 r12 r13
r21 r22 r23
r31 r32 r33

Note that the coefficients of R are constrained:
A rotation matrix is orthonormal:

 R RT = I (unit matrix)

3

5

Example for Coordinate
Transformation

z

x

y

v0 z´

y´
x´ camera coo system:

• displacement by v0
• rotation by pan angle β = -300

• rotation by nick angle α = 450

v´= R (v - v0) with R = Rx Ry

1
0
0

0 0Rx = 0
1
0

0 0

Ry =

�

− 1
2

2

�

1
2

2

�

1
2

3

�

1
2

2

�

1
2

2

�

1
2

3

�

1
2

�

− 1
2

6

Perspective Projection Geometry

Projective geometry relates the coordinates of a point in a scene to the
coordinates of its projection onto an image plane.

Perspective projection is an adequate model for most cameras.

•

•
•

x
y

xp

yp

zp = f

v = x
y
z

image plane

optical center

x f
 zxp =

y f
 zyp=

scene pointimage point

Projection equations:

focal
distance f

z = optical axis

Vp = xp
yp
zp

4

7

Perspective and Orthographic
Projection

x´f
 z´

xp´=

Within the camera coordinate system the perspective projection of a
scene point onto the image plane is described by

y´f
 z´

yp´= zp´= f (f = focal distance)

• nonlinear transformation
• loss of information

If all objects are far away (large z´), f/z´ is approximately constant
=> orthographic projection

xp´= s x´ yp´= s y´ (s = scaling factor)

Orthographic projection can be viewed as projection with
parallel rays + scaling

8

From Camera Coordinates to
Image Coordinates

xp´´= (xp´- xp0´) a a, b scaling parameters

yp´´= (yp´- yp0´) b xp0´, yp0´ origin of image coordinate system

Transform may be necessary because
- optical axis may not penetrate image plane at origin of desired

coordinate system
- transition to discrete coordinates may require scaling

Example:

•

x´´

x´

y´

y´´

Image boundaries in camera coordinates:
x´max = c1 x´min = c2
y´max = d1 y´min = d2

Discrete image coordinates:
x´´= 0 .. 511 y´´ = 0 .. 575

Transformation parameters:
xp0´ = c1 yp0´ = d1 a = 512 / (c2 - c1) b = 576 / (d2 - d1)

c1 c2

d1

d2

5

9

Complete Perspective Projection
Equation

We combine the 3 transformation steps:
1. scene coordinates => camera coordinates
2. projection of camera coordinates into image plane
3. camera coordinates => image coordinates

xp´´= { f/z´[cos β cos γ (x - x0) + cos β sin γ (y - y0) + sin β (z - z0)] - xp0 } a

yp´´= { f/z´[(- sin α sin β cos γ - cos α sin γ) (x - x0) +
(− sin α sin β sin γ + cos α cos γ) (y - y0) +
sin α cos β (z - z0)] - yp0 } b

with z´= (- cos α sin β cos γ + sin α sin γ) (x - x0) +
(- cos α sin β sin γ - sin α cos γ) (y - y0) +
cos α cos β (z - z0)

10

Homogeneous Coordinates (1)

4D notation for 3D coordinates which allows to express nonlinear 3D
transformations as linear 4D transformations.

Normal: v´= R (v - v0)
Homogeneous coordinates: v´ = A v (note italics for

homogeneous coordinates)

Transition to homogeneous coordinates:
vT = [x y z] => vT = [wx wy wz w] w ≠ 0 is arbitrary constant

Return to normal coordinates:
1. Divide components 1- 3 by 4th component
2. Omit 4th component

A = R T = r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

1 0 0 -x0
0 1 0 -y0
0 0 1 -z0
0 0 0 1

6

11

Homogeneous Coordinates (2)

vp´ = P v´ with P = 1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/f 0

and v´ = wx
wy
wz
w

gives vp´ = wx
wy
wz
wz/f

Returning to normal coordinates gives vp´ = xf/z
yf/z
 f

compare with
earlier slide

Perspective projection in homogeneous coordinates:

Transformation from camera into image coordinates:

vp´´ = B vp´ with B = a 0 0 -x0a
0 b 0 -y0b
0 0 1 0
0 0 0 1

gives vp´´ =and vp´ = wxp
wyp
0
w

wa(xp-x0)
wb(yp-y0)
0
w

12

Homogeneous Coordinates (3)

Perspective projection can be completely described in terms of a linear
transformation in homogeneous coordinates:

vp´´ = B P R T v

In the literature the parameters of these equations may vary because
of different choices of coordinate systems, different order of
translation and rotation, different camera models, etc.

B P R T may be combined into a single 4 x 4 matrix C :

vp´´ = C v

7

13

Inverse Perspective Equations

x
y
z

xp´´
yp´´

?

Which points in a scene correspond to a point in the image?

Each image point defines a projection ray as the locus of possible
scene points (for simplicity in camera coordinates):

vp´ => vλ´= λ vp´ •
•

origin
vp´

vλ´

v = v0 + RT λ vp´

3 equations with the 4 unknowns x, y, z, λ and camera parameters R and v0

Applications of inverse perspective mapping for e.g.
- distance measurements
- binocular stereo
- camera calibration
- motion stereo

14

Binocular Stereo (1)

y

x

z

•

• •

l1 l2

o1 o2

optical axis 1 optical axis 2

v

b
u1 u2

l1, l2 camera positions (optical center)
b stereo base
o1, o2 camera orientations (unit vectors)
f1, f2 focal distances
v scene point
u1, u2 projection rays of scene point (unit vectors)

8

15

Binocular Stereo (2)

Determine distance to v by measuring u1 and u2
Formally: α u1 = b + β u2 => v = α u1 + l1
α and β are overconstrained by the vector equation. In practice,
measurements are inexact, no exact solution exists (rays do not intersect).
Better approach: Solve for the point of closest approximation of both rays:

α0 u1 + (b + β0 u2)v =
2

+ l1 => minimize || α u1 - (b + β u2) ||2

Solution: α0=
u1
T b - (u1

T u2) (u2
T b)

1 - (u1
T u2)

2

β0=
(u1
T u2) (u1

T b) - (u2
T b)

1 - (u1
T u2)

2

16

Distance in Digital Images
Intuitive concepts of continuous images do not always carry over to
digital images.
Several methods for measuring distance between pixels:
Eucledian distance

City-block distance

D4((i, j)(h, k)) = |i - h| + |j - k|

Chessboard distance

D8((i, j)(h, k)) = max { |i - h|, |j - k|}

costly computation of square root,
can be avoided for distance comparisons

number of steps in a rectangular grid if
diagonal steps are allowed (number of
moves of a king on a chessboard)

number of horizontal and vertical steps
in a rectangular grid

 DE ((i, j),(h,k)) = (i − h)2 + (j − k)2

9

17

Connectivity in Digital Images

Connectivity is an important property of subsets of pixels. It is based
on adjacency (or neighbourhood):

Pixels are 4-neighbours
if their distance is D4 = 1

Pixels are 8-neighbours
if their distance is D8 = 1

A path from pixel P to pixel Q is a sequence of pixels beginning at
Q and ending at P, where consecutive pixels are neighbours.

In a set of pixels, two pixels P and Q are connected, if there is a
path between P and Q with pixels belonging to the set.

A region is a set of pixels where each pair of pixels is connected.

all 4-neighbours of
center pixel

all 8-neighbours of
center pixel

18

Closed Curve Paradoxon

solid lines if
8-neighbourhood
is used

line 2 does not
intersect line 1
although it crosses
from the outside to the
inside

line 1 line 2

a similar paradoxon
arises if
4-neighbourhoods
are used

10

19

Geometric Transformations
Various applications:
• change of view point
• elimination of geometric distortions from image capturing
• registration of corresponding images
• artificial distortions, Computer Graphics applications

Step 1: Determine mapping T(x, y) from old to new coordinate system
Step 2: Compute new coordinates (x´, y´) for (x, y)
Step 3: Interpolate greyvalues at grid positions from greyvalues at

transformed positions

• •• •
•

•
•

• •• ••
greyvalue must be
interpolated

20

Polynomial Coordinate Transformations

x ′ = ark
k=0

m-r

∑
r =0

m

∑ xryk

y ′ = brk
k=0

m-r

∑
r =0

m

∑ xryk

• Assume polynomial mapping between (x, y) and (x´, y´) of degree m
• Determine corresponding points
• a) Solve linear equations for ark, brk (r, k = 1 ... m)
 b) Minimize mean square error (MSE) for point correspondences

General format of transformation:

Approximation by biquadratic transformation:
x´= a00 + a10x + a01y + a11xy + a20x2 + a02y2

y´= b00 + b10x + b01y + b11xy + b20x2 + b02y2

Approximation by affine transformation:
x´= a00 + a10x + a01y
y´= b00 + b10x + b01y

at least 6 corresponding
pairs needed

at least 3 corresponding
pairs needed

11

21

Translation, Rotation, Scaling,
Skewing

cos α
− sin α

sin α
cos α

R =
Rotation of image coordinates by angle α:
v´= R v with

v = x
y

v´= x´
y´

Translation by vector t:
v´= v + t with t = tx

ty

Scaling by factor a in x-direction and factor b in y-direction:

a
0

0
b

S =v´= S v with

Skewing by angle β:
1
0

tan β
1

W =v´= W v with

22

Example of Geometry Correction
by Scaling

Distortions of electron-tube cameras may be

 1 - 2 % => more than 5 lines for TV images

ideal image actual image
Correction procedure may be based on
- fiducial marks engraved into optical system
- a test image with regularly spaced marks

Ideal mark positions:
xmn = a + mb, ymn = c + nd

x x x x

x x x x

x x x x

x x x x

x

y

a

c
b

d

Determine a, b, c, d such that MSE (mean
square error) of deviations is minimized

Actual mark positions:
x´mn, y´mn

m = 0 ... M-1
n = 0 ... N-1

12

23

Minimizing the MSE

E = (xmn − ′ x mn
n =0

N−1

∑
m =0

M−1

∑)2 + (ymn − ′ y mn)2Minimize

= (a + mb − ′ x mn
n =0

N−1

∑
m =0

M −1

∑)2 + (c + nd − ′ y mn)2

From dE/da = dE/db = dE/dc = dE/dd = 0 we get:

a =
2

MN(M + 1)
(2M −1− 3m) ′ x mn

n
∑

m
∑

b = 6
MN(M2 −1) (2m−M + 1) ′ x mn

n
∑

m
∑

c =
2

MN(N + 1)
(2N − 1− 3n) ′ y mn

n
∑

m
∑

d = 6
MN(N2 −1) (2n −N + 1) ′ y mn

n
∑

m
∑

Special case M=N=2:

a = 1/2 (x´00 + x´01)

b = 1/2 (x´10 - x´00 + x´11 - x´01)

c = 1/2 (y´00 + y´01)

d = 1/2 (y´01 - y´00+ y´11 - y´10)

24

Principle of Greyvalue Interpolation

• •
• •
• •

•
•

••
•

•

••
• •Greyvalue interpolation = computation of

unknown greyvalues at locations (u´v´) from
known greyvalues at locations (x´y´)

Two ways of viewing interpolation in the context of geometric
transformations:

A Greyvalues at grid locations (x y) in old image are placed at
corresponding locations (x´y´) in new image: g(x´y´) = g(T(x y))
=> interpolation in new image

B Grid locations (u´v´) in new image are transformed into
corresponding locations (u v) in old image: g(u v) = g(T-1(u´v´))
=> interpolation in old image

We will take view B:
Compute greyvalues between grid from greyvalues at grid locations.

13

25

Nearest Neighbour
Greyvalue Interpolation

(xiyj) (xi+1yj) (xiyj+1) (xi+1yj+1) grid locations

(x y) location between grid with
xi ≤ x ≤ xi+1, yj ≤ y ≤ yj+1

Assign to (x y) greyvalue of nearest grid location
•

(xiyj) (xi+1yj)

(xiyj+1) (xi+1yj+1)

(x y)

Each grid location represents the greyvalues in a
rectangle centered around this location:

Straight lines or edges may appear step-like after
this transformation:

• • • • • • • • • •

• • • • • • • • • •

26

Bilinear Greyvalue Interpolation

The greyvalue at location (x y) between 4 grid points (xiyj) (xi+1yj)
(xiyj+1) (xi+1yj+1) is computed by linear interpolation in both directions:

g(x,y) = 1
(xi+1 − xi)(yj+1 − yi)

(xi+1 − x)(yj+1 − y)g(xiyj) + (x − xi)(yj+1 − y)g(xi+1yj) +{
 (xi+1 − x)(y − yj)g(xiyj+1) + (x − xi)(y − y j)g(xi+1yj+1)}

g1 g12 g2

g3 g34 g4

Simple idea behind long formula:
1. Compute g12 = linear interpolation of g1 and g2
2. Compute g34 = linear interpolation of g3 and g4
3. Compute g = linear interpolation of g12 and g34

The step-like boundary effect is reduced.
But bilear interpolation may blur sharp edges.

g •

14

27

Bicubic Interpolation

Each greyvalue at a grid point is taken to
represent the center value of a local bicubic
interpolation surface with cross section h3.

1 - 2|x|2 + |x|3 for 0 < |x| < 1
h3 = 4 - 8|x| + 5|x|2 - |x|3 for 1 < |x| < 2

0 otherwise
The greyvalue at an arbitrary point [u, v] (black dot
in figure) can be computed by
- 4 horizontal interpolations to obtain greyvalues
at points [u, j-1] ... [u, j+2] (red dots), followed by
- 1 vertical interpolation (between red dots) to
obtain greyvalue at [u, v].

cross section of
interpolation kernel

j-1

j

j+1

j+2

i-1 i i+1 i+2

Note:
For an image with constant geyvalues g0 the
interpolated greyvalues at all points between
the grid lines are also g0.

-2 -1 0 1 2

1

•

•
•

•
•

