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Global Image Properties!

Global image properties refer to an image as a whole rather than 
components. Computation of global image properties is often required 
for image enhancement, preceding image analysis.!

We treat!
! •   empirical mean and variance!

! •   histograms!
! •   projections!
! •   cross-sections!

! •   frequency spectrum!

2!

Empirical Mean and Variance!

Empirical mean = average of all pixels of an image!

g = 1
MN gmnn=0

N−1∑m=0
M−1∑ with M x N image size!

Simplified notation:! g = 1
K gkk=0

K−1∑

Incremental computation:! g 0 = 0      g k =
g k−1(k−1) + gk

k

Empirical variance = average of squared deviation of all pixels from mean!

σ 2 = 1
K (gkk=1

K∑ − g )2 = 1
K gk

2
k=1
K∑ − g 2

Incremental computation:!

σ0
2 = 0    σk

2 =
(σ k -1

2 + g k−1
2 )(k −1) + gk

2

k
− ( g k−1(k − 1) + gk

k
)2 k = 2 ... K!

k = 2 ... K!
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Greyvalue Histograms!

A greyvalue histogram hf(z) of an image f provides the frequency of 
greyvalues z in the image.!
The histogram of an image with N quantization levels is represented 
by a 1D array mit N elements.!

hf(z)!

qN-1!
z!

A greyvalue histogram describes discrete values, a greyvalue 
distribution describes continuous values.!

4!

Example of Greyvalue Histogram!

255 (darkest)!0!

image! histogram!

A histogram can be "sharpened" by 
discounting pixels at edges!
(more about edges later):!

255!0!
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Histogram Modification!

Greyvalues may be remapped into new greyvalues to!
•   facilitate image analysis!
•   improve subjective image quality!
Example: Histogram equalization!

1. Cut histogram into N stripes of equal area (N = new number of greyvalues)!
2. Assign new greyvalues to consecutive stripes !

Examples show improved resolution 
of image parts with most frequent 
greyvalues (road surface)!

6!

Projections!
A projection of greyvalues in an image is the sum of all greyvalues 
orthogonal to a base line: !

m!

n!

pm = gmn
n
∑

Often used:!

"row profile" = row vector of all (normalized) column sums!
"column profile" = column vector of all (normalized) row sums!
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Cross-sections!

A cross-section of a greyvalue image is a vector of all pixels along a 
straight line through the image.!
•   fast test for localizing objects!

•   commonly taken along a row or column!

8!

Noise!

Deviations from an ideal image can often be modelled as additive noise:!

=! +!

Typical properties:!

•  mean 0, variance σ2 > 0!
•  spatially uncorrelated:   E[ rij rmn] = 0 for ij ≠ mn!
•  temporally uncorrelated:   E[ rij,t1 rij,t2] = 0 for t1 ≠ t2!

•  Gaussian probability density:! p(r) = 1
σ 2π

e
− r2

2σ 2

Noise arises from analog signal generation (e.g. amplification) and 
transmission. !
There are several other noise models other than additive noise.!

E[x] is !
"expected 
value" of x!
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Noise Removal by Averaging!

Principle:     !

There are basically 2 ways to "average out" noise:!
- ! temporal averaging if several samples  gij,t  of the same pixel but at 

different times t = 1 ... T are available!
- ! spatial averaging if gmn ≈ gij for all pixels gmn in a region around gij!

How effective is averaging of K greyvalues?!

ˆ r K = 1
K rk

k=1

K
∑ ⇒ 0 sample mean approaches density mean!

ˆ r K = 1
K rk

k=1

K
∑ is random variable with mean and variance depending on K!

mean!

E (ˆ r K − E ˆ r K[ ])2[ ] = E ˆ r K
2[ ] = E 1

K2 ( rk )2

k =1

K

∑⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ =

1
K2 E rk

2[ ] =
σ2

Kk =1

K

∑ variance!

Example: In order cut the standard deviation σ  in half, 4 values have to averaged !

E ˆ r K[ ] = 1
K

E rk[ ]
k=1

K

∑ = 0

10!

Example of Averaging!
intensity averaging with 

5 x 5 mask!

1!1! 1!1!
1!1! 1!1!
1!1! 1!1!
1!1! 1!1!
1!1! 1!1!

1!
1!
1!
1!
1!

1
25
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Simple Smoothing Operations!

1.  Averaging !

D is region around gij!
ˆ g ij =

1
|D |

gmn
gmn∈ D
∑

ij!

Example of !
3-by-3 region D!

2.  Removal of outliers!

ˆ g ij =
1

|D |
gmn

gmn∈ D
∑    if   gij −

1
|D |

gmn
gmn∈ D
∑ ≥ S

gij!

S is threshold!

3.  Weighted average!

ˆ g ij =
1
wk∑

 wkgk
gk∈ D
∑ wk = weights in D ! 3!

2!

2!
2!2!

1! 1!

1! 1!

Note that these operations are heuristics and not well founded!!

Example of weights !
in 3-by-3 region!

12!

A!

B!

Bimodal Averaging!
To avoid averaging across edges, assume bimodal greyvalue distribution 
and select average value of modality with largest population. !

  

� 

g  D = 1
| D |

gmn
gmn∈  D
∑1. Determine!

  

� 

2. A = gk with gk ≥ g D{ }   B = gk with gk < g D{ }

3.  gD´= !

1
| A |

gk
gk∈ A
∑

1
|B |

gk
gk∈ B
∑

if |A| ≥ |B|!

otherwise!

Example:!
  

� 

g D = 16,7 A, B              gD´= 13!11! 14! 15!

13! 12! 25!

15! 19! 26!
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Averaging with Rotating Mask!
Replace center pixel by average over pixels from the most 
homogeneous subset taken from the neighbourhood of center pixel.!
Measure for (lack of) homogeneity is dispersion σ2 (= empirical 
variance) of the greyvalues of a region D:!

σij
2 =

1
|D |

(gmn
gmn∈ D
∑ − g ij)

2g ij =
1

|D|
gmn

gmn∈ D
∑

Possible rotated masks in 5 x 5 neighbourhood of center pixel:!

Algorithm:!
1. Consider each pixel gij!
2. Calculate dispersion in mask for all rotated positions of mask!
3. Choose mask with minimum dispersion!
4. Assign average greyvalue of chosen mask to gij!

14!

Median Filter!
Median of a distribution P(x):   xm such that P(x < xm) = 1/2!

Median Filter:!
ˆ g ij =  max a with gk ∈D and | {gk < a}|< |D|

2

1. Sort pixels in D according to greyvalue!
2. Choose greyvalue in middle position!

Example:! 11! 14! 15!

13! 12! 25!

15! 19! 26!

11!
12!
13!
14!
15!
15!
19!
25!
26!

greyvalue of center pixel 
of region is set to 15!

Median Filter reduces influence of outliers in either direction!!
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Local Neighbourhood Operations!
Many useful image transformations may be defined as an instance of 
a local neighbourhood operation:!

ˆ g mn = f (g1,g2 , ...,gK)        g1,g2 ,...,gK ∈Dij

Generate a new image with pixels         by applying operator 
f to all pixels gij of an image!

ˆ g mn

ij!

Dij!
mn!

Pixel indices i, j may be incremented by steps larger than 1 to obtain 
reduced new image.!

example of 
neighbour-

hood!

16!

Example of Sharpening!
intensity sharpening 
with 3 x 3 mask!

-1! -1! -1!
-1! -1!
-1! -1! -1!

"unsharp masking" =!
subtraction of blurred image!

9!

ˆ g ij = gij −
1

|D|
gmn

gmn ∈ D
∑
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Spectral Image Properties!
An image function may be considered a sum of spatially sinusoidal 
components of different frequencies.!
The frequency spectrum indicates the magnitudes of the spatial 
frequencies contained in an image.!
Principle:  !

x!

y!

fx = u!

fy = v!

Important qualitative properties of spectral information:!

•   spectral information is independent of image locations!
•   sharp edges give rise to high frequencies!
•   noise (= disturbances of image signal) is often high-frequency  !

18!

Illustration of  
1-D Fourier Series Expansion!

original waveform!

sinusoidal components!
add up to original waveform!

approximation of a rectangular pulse!
with 1 ... 5 sinusoidal components!

Online demonstration of Fourier Series approximations at http://www.jhu.edu/~signals/fourier2/!



11.11.2010!

10!

19!

Discrete Fourier Transform (DFT)!

Guv =
1

MN
 gmn

n=0

N−1

∑
m=0

M−1

∑ e
−2πi( mu

M
+nv

N
)

gmn =  Guv
v=0

N−1

∑
u=0

M −1

∑ e
2πi( mu

M
+nv

N
)

Transform is based on periodicity 
assumption!

Discrete Fourier Transform:! Inverse Discrete Fourier Transform:!

=> ! periodic continuation may 
! cause boundary effects !

for   u = 0 ... M-1, v = 0 ... N-1! for   m = 0 ... M-1, n = 0 ... N-1!

Notation for computing the Fourier Transform:!

Guv = F{ gmn }!
gmn = F-1{ Guv }!

Computes image representation as a sum of sinusoidals.!

20!

Basic Properties of DFT!

In general, the Fourier transform is a complex function with a real and an 
imaginary part:!
Guv = Ruv + i Iuv!

|Guv|= Ruv
2 + Iuv

2
frequency spectrum or amplitude spectrum!

power spectrum or spectral density!Puv =  |Guv |2 = Ruv
2 + Iuv

2

Φuv = tan−1 Iuv
Ruv

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ phase spectrum!

Euler´s formula:    !
r eiz = r cos(z) + r i sin(z)!

•  Linearity:! F{ a gmn + b gmn} = a F{ gmn } + b F{ gmn }!

•  Symmetry:   ! G-u,-v = Guv    for real gmn (such as images)!

Recommended reading:!
Gonzalez/Wintz!
Digital Image Processing!
Addison Wesley 87 !
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Illustrative Example of  
Fourier Transform!

x!

y!

g(x, y)!

X!
Y!

A!

frequency spectrum!

frequency spectrum as 
an intensity function !

2D image function!

G(u, v)!

Note that large spectral amplitudes 
occur in directions vertical to prominent 
edges of the image function!

22!

Examples of Fourier Transform Pairs!

• • • • • •!• • • • • •! • • • • • •!

• • • • • •!
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Fast Fourier Transform (FFT)!
Ordinary DFT needs ~(MN)2 operations for an M x N image.!
Example:  M = N = 1024, 10-12 sec/operation  => 1,1 sec!

FFT is based on recursive decomposition of gmn into subsequences.!
 =>   multiple use of partial results    =>   ~MN log2(MN) operations !
Same example needs only 0.000021 sec!

Decomposition principle for 1D Fourier transform:!

Gr =
1
N gnn=0

N−1∑ e
−2πir n

N { gn
(1) } = { g2n }!

{ gn
(2) } = { g2n+1 }!

{ gn } =! n = 0 .. N/2-1!

Gr =
1
N

gn
(1)e

−2πir 2n
N + gn

(2 )e
−2πir(2n+1)

N⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ n=0

N
2−1∑ r = 0 ... N-1!

Gr = Gr
(1) + e

−2πi r
N  Gr

(2 )

r = 0 ... N/2-1!
Gr+N 2 = Gr

(1) − e
−2πi r

N  Gr
(2 )

All Gr may be computed 
by 2(N/2)2 instead of (N)2 
operations!!

24!

Convolution!

Convolution is an important operation for describing and analyzing 
linear operations, e.g. filtering. !
Definition of 2D convolution for continuous signals:!

g (x,y) =  f (r,s) 
−∞

∞

∫
−∞

∞

∫ h (x− r,y− s) dr ds = f (x,y)∗h (x,y)

Convolution in the spatial domain is dual to multiplication in the 
frequency domain:!

	 F{ f(x, y) * h(x, y) } = F(u, v) H(u, v)!

	 F{ f(x, y) h(x, y) } = F(u, v) * H(u, v)!

H can be interpreted as attenuating or amplifying the frequencies of F. !
=> Convolution describes filtering in the spatial domain. !
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Filtering in the Frequency Domain!
A filter transforms a signal by modifying its spectrum.!

! G(u, v) = F(u, v) H(u, v)!
F ! Fourier transform of the signal!
H! frequency transfer function of the filter!
G! modified Fourier transform of signal !

•! low-pass filter! low frequencies pass, high frequencies are 
! ! ! attenuated or removed!

•! high-pass filter! high frequencies pass, low frequencies are 
! ! ! attenuated or removed!

•! band-pass filter! frequencies within a frequency band pass, 
! ! ! other frequencies below or above are ! ! ! ! attenuated or removed!

Often (but not always) the noise part of an image is high-frequency and 
the signal part is low-frequency. Low-pass filtering then improves the 
signal-to-noise ratio.!

26!

Filtering in the Spatial Domain!

Filtering in the spatial domain is described by convolution.!

g (x,y) =  f (r,s) 
−∞

∞

∫
−∞

∞

∫ h (x− r,y− s) dr ds = f (x,y)∗h (x,y)

Commonly used description for the effect of 
technical components in linear signal theory:!

s1(t)!  h ! s1´(t)!

s2(t)!  h ! s2´(t)!
a s1(t) + b s2(t) !  h ! a s1´(t) + b s2´(t) !

An impulse δ as input generates the filter function h(x, y) as output:!

h (x,y) =  h (r,s) 
−∞

∞

∫
−∞

∞

∫ δ (x− r,y− s) dr ds = h (x,y) ∗δ (x,y)

′ s (t) = h(r) s
−∞

+ ∞

∫ ( t − r ) dr

h(x, y) is often called "impulse response"!
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Low-pass Filters!

u!

v!|H|!
!   1  for !
|H(u, v)|=!
!   0  otherwise  !

u2 + v2 ≤ W
Ideal low-pass filter!

W!
All frequencies above 
W are removed!

Note that the filter function h(x, y) is rotation symmetric and !
h(r) ~ sin 2πWr / (2πWr)   with   r2 = x2 + y2!
=>  impuls-shaped input structures may produce ring-like structures as output!

Gaussian filter!

A Gaussian filter has an optimally smooth boundary, both in the frequency 
and the spatial domain. It is important for several advanced image analysis 
methods, e.g. generating multiscale images. !

H(u,v) = e
−  1

2
(u2 +v2 )σ2

h(x,y) = 1
2πσ2 e

−  1
2

 x2 +y2

σ2

28!

Discrete Filters!
For periodic discrete 2D signals (e.g. discrete images), the convolution 
operator which describes filtering is!

gij =  fmn
n=0

N- 1

∑
m=0

M−1

∑ hi−m,j−n

Each pixel gij of the filtered image is the sum of the products of the 
original image with the mirror filter h-m,-n placed at location ij. !

Example:!
hmn = h-m,-n is a bell-shaped function!
The filtering effect is a smoothing operation 
by weighted local averaging.!

The choice of weights of a local filter - the convolution mask - may 
influence the properties of the output image in important ways, e.g. 
with regard to remaining noise, blurred edges, artificial structures, 
preserved or discarded information.!
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Matrix Notation for Discrete Filters!
gij =  fmn

n=0

N- 1

∑
m=0

M−1

∑ hi−m,j−nThe convolution operation! ! !     !

may be expressed as  matrix multiplication g = H f.!

gT = [g00 g01 ... g0 N-1 g10 g11 ... g1N-1 ... gM-1 0 gM-1 1 ... gM-1 N-1]!
fT = [f00 f01 ... f0 N-1 f10 f11 ... f1 N-1 ... fM-1 0 fM-1 1 ... fM-1 N-1]!

Hj =! hj 0 ! hj N-1 ! hj N-2 ! ... ! hj 1!

! hj 1 ! hj 0 ! hj N-1 ! ... ! hj 2!
! •!! •!! •!
! hj N-1 ! hj N-2 ! h1 N-3 ! ... ! hj 0 !

Vectors g and f are obtained by stacking rows (or columns) onto each other:!

The filter matrix H is obtained by constructing a matrix Hj for each row j of hij:!

H =! H0! HM-1! HM-2! ...! H1!

! H1! H0! HM-1! ...! H2!
! .!
! .!! .!

! HM-1! HM-2! HM-3! ...! H0!

30!

Avoiding Wrap-around Errors!

Wrap-around errors result from filter responses due to the 
periodic continuation of image and filter.!
To avoid wrap-around errors, image and filter have to be 
extended by zeros. !

A x B! original image size!
C x D! original filter size!
M x N! extended image and filter size!

! M ≥ A + C - 1! !
! N ≥ B + D - 1!  !

To avoid wrap-around error:!

Example:!
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Convolution Using the FFT!

Convolution in the spatial domain may be performed more efficiently 
using the FFT.!

′ g ij =  gmn
n=0

N -1
∑

m= 0

M−1
∑ hi−m,j−n (MN)2 operations needed!

Using the FFT and filtering in the frequency domain:!

gmn! ! Guv! ! Guv´! ! gmn´!
FFT! Huv! FFT-1!

MN log(MN)!        MN! ! MN log(MN)! # of operations!

Example with M = N = 512:!
•! straight convolution needs ~ 1010 operations!
•! convolution using the FFT needs ~107 operations!

32!

Convolution and Correlation!
The crosscorrelation function of 2 stationary stochastic processes f and h is:!

Compare with convolution: filter function is not mirrored!!

Correlation is particularly important for matching problems, e.g. 
matching an image with a template.!
Correlation may be computed more efficiently by using the FFT.!

Correlation using Fourier Transform:!

F{ f(x, y) o h(x, y) } = F*(u, v) H(u, v)!

F{ f*(x, y) h(x, y) } = F(u, v) o H(u, v)!
F*, f* are complex conjugates!

    
g (x,y )=  f (r ,s) 

−∞

∞

∫
−∞

∞

∫ h (r − x,s − y) d r d s = f (x, y) o h (x,y )= f (x, y)∗h (−x,− y)
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Correlation and Matching!

For (periodic) discrete images, crosscorrelation at (i, j) is!

•! find degree of match for all 
locations of template!

•! find location of best match!

image                      template   !

cij =  fmn
n=0

N-1
∑

m=0

M−1
∑ hm−i,n− j

dij =  fmn − hm−i.n− j( )2

n=0

N-1

∑
m=0

M−1

∑ =

 fmn( )2

n=0

N-1

∑
m=0

M−1

∑ − 2  fmnhm− i.n− j +  hm− i.n− j( )2

n=0

N- 1

∑
m=0

M−1

∑
n=0

N-1

∑
m=0

M −1

∑

Matching a template with an image:!

Compare with Euclidean distance between f and h at location (i, j):!

Since image energy and 
template energy are constant, 
correlation measures distance!

34!

Principle of Image Restoration!
Typical degradation model of a continuous 1-dimensional signal: !

h(t)!g(t)! +!

z(t)!

g´(t)!

g(t)! original signal!
h(t)! degrading filter!
z(t)! additive noise!
g´(t)! degraded signal!

How can one process g´(t) to obtain a g´´(t) which best approximates g(t)?!

r(t)!g´(t)! g´´(t)!
r(t)! restoring filter!
g´´(t)! restored signal!

Note that a perfect restoration  g´´(t) = g(t) may not be possible even if z(t) ≡0.!

H(f)!G(f)! G´(f)! H´(f)! G´´(f)!

The ideal restoring filter H´(f) = 1/H(f) may not exist because of zeros of H(f).!

?!
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Image Restoration by  
Minimizing the MSE!

Degradation in matrix notation:! g´= H g + z!

Restored signal g´´ must minimize the mean square error J(g´´) of the 
remaining difference:!

min || g´- Hg´´||2	


δJ(g´´)/δg´´ = 0 = -2HT(g´ - Hg´´)!

g´´= (HTH)-1HTg´!

If M = N and hence H is a square matrix, and if H-1 exists, we can simplify:!

g´´= H-1g´!

pseudoinverse of H!

The matrix H-1 gives a perfect restoration if  z ≡ 0.  !


