Segmentation

Segmenting the image into image elements which may correspond to meaningful scene elements

Example: Partitioning an image into regions which may correspond to objects

Typical results of first segmentation steps

Problems with Segmentation

landhouse scene

upper part and leg of person

Greyvalues of foreground may be indistinguishable from greyvalues of background.

In general, context knowledge is necessary for successful segmentation
Primary Goal of Segmentation

“Segmenting an image into image elements which may correspond to meaningful scene elements”

What sort of image elements may correspond to meaningful scene elements?

Answer depends on type and complexity of images: Less constrained scenes must be segmented more conservatively.

Segmentation into ...

... entire objects e.g. for printed character recognition
 industrial object recognition
 medical cell analysis

... edge lines e.g. for aerial image analysis
 indoor scenes

... edge elements, vertices, groupings e.g. for natural scenes

Secondary Goals of Segmentation

• Multiple resolutions for subsequent processes

 coarse resolution description for e.g.
 - analysis of image layout (horizon, foreground, background)
 - control of attention
 - planning a detailed analysis

 fine resolution description e.g. for
 - details
 - stereo analysis
 - motion analysis

• Data reduction
 Because of their large data volume, raw images are inconvenient as basic data structures for image analysis

 E.g. TV colour image 3 x 512 x 576 ≈ 7 MB
 10 sec TV colour images 10 x 25 x 7 ≈ 1750 MB
Thresholding

Thresholding has been introduced as a discretization technique. The same techniques can be applied for segmentation.

Representing Regions

A region is a maximal 4- (or 8-) connected set of pixels.

Methods for digital region representation:

- grid occupancy
 - labelling
 - run-length coding
 - quadtree coding
 - cell sets
- boundary description
 - chain code
 - straight-line segments, polygons
 - higher-order polynomials

Note that discretizations of an analog region are not shift or rotation invariant:
Component Labelling

Determining connected regions in B/W images

Component 1
(2 3 9)(3 3 7)(4 6 6)
Component 2
(4 12 12)
Component 3
(5 13 13)(6 9 14)(7 9 9 14 14)(8 9 9 14 14)(9 9 9 14 14)
Component 4
(9 0 0)(10 0 0)(11 0 3)(12 0 0 3 3)(13 0 0 3 3)(14 0 0 3 3)
Component 5
(9 5 6 12 12)(10 6 6 11 12)(11 6 11)

Component labelling of B/W images with 4-neighbourhood
Scan image left to right, top to bottom:
if pixel is white then continue
if pixel is black then
if left neighbour is white and upper neighbour is white then assign new label
if left neighbour is black and upper neighbour is white then assign left label
if left neighbour is white and upper neighbour is black then assign upper label
if left neighbour is black and upper neighbour is black then
assign left label, merge left label and upper label

Boundaries

For a 4- (8-) connected region R the boundary is defined as the set of pixels of R which are 8- (4-) connected to the complement R^c of R.

Example for 8-connectivity:

Boundary pixels are usually ordered clockwise for outer boundaries and counter-clockwise for inner boundaries.

Disadvantage of this boundary definition:
R and R^c have different boundaries - but nothing is in between.
Chain Code

Chain code represents boundaries by "chaining" direction arrows between successive boundary elements.

Chain code for 8-connectivity:

Arbitrary choice of starting point, chain code can be represented e.g. by

\{45671123\}

Normalization by circular shift until the smallest integer is obtained:

\{11234567\}

Chain code for 4-connectivity:

Arbitrary starting point:

\{2223330010111\}

Normalized:

\{0010111222333\}

Chain Code Derivatives

Chain code is highly susceptible to discretization noise. Hence derived properties are usually also noisy.

Slope:

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(0)</th>
<th>(45)</th>
<th>(-45)</th>
<th>(90)</th>
<th>(-90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tan\ \theta)</td>
<td>0</td>
<td>(\pm\infty)</td>
<td>(-1)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Curvature:

\(\Delta\theta = \theta_{i+1} - \theta_i\)

Example:

\(\{7000120007067010\}\)
k-Slope and k-Curvature

Smoothed chain code slope and curvature:

L chain code
\{p_1 \ldots p_N\} starting points of chain code elements

right k-slope of L at i, k\geq 1, is slope from p_i to p_{i+k}
left k-slope of L at i, k\geq 1, is slope from p_i to p_{i-k}

k-curvature at i is difference between right and left k-slope

Example:

```
\begin{align*}
k = 3 & \\
45^\circ & \\
\end{align*}
```

Digital Straight Lines

What are the properties of a chain code which represents a straight line boundary?

- may represent a straight line
- may not represent a straight line
- may not represent a straight line

Necessary and sufficient straight line properties of chain code:

1. Only 2 element types
2. Numerical difference of element types (mod 8) at most 1
3. One of the element types occurs only in runs of length 1 and is distributed "as regularly as possible".

"as regularly as possible": Assume 2 types a and b, b single. Runs of a must have lengths \(l_a\) and \(l_a+1\). Consider \(l_a\)-runs and \(l_a+1\)-runs as 2 chain code types and apply straight line criteria recursively.
Uniformity Assumption

Many segmentation procedures are based on a uniformity assumption:

- meaningful objects correspond to regions which satisfy a uniformity predicate => region finding
- object boundaries correspond to discontinuities of a uniformity predicate => edge finding

Typical uniformity predicates:
- greyvalues within a narrow interval (e.g. in B/W images)
- similar colour
- small greyvalue gradient
- uniform statistical properties (e.g. local distribution, texture)
- smoothness in 3D

Region Growing

Regions which satisfy a uniformity criterion may be grown from seed regions based on two criteria:
1. Merge region with new area if merged region satisfies uniformity criterion.
 E.g. greyvalue variance remains limited
2. Merge region with new area if boundary area satisfies a merging criterion.
 E.g. boundary area has weak edges

Problem with (1): Large regions may be merged with small patches even if the patches are distinctly different.
Problem with (2): Distinct large regions may be merged if they are connected by a weak boundary.
Segmentation into Regions Using Histograms

Basic idea:

Recursive histogram decomposition:
- compute 1D histograms of pixel features (e.g. R, G, B histograms)
- use "clearest" histogram for decomposition into regions
- apply procedure recursively to individual regions

Problems:
- histograms do not reflect neighbourhood relationships
- histograms may not show multimodality clearly
- bad early decisions cannot be corrected

Region Segmentation by Split-and-merge

Region boundaries are determined along quadtree region boundaries.

- Begin with an arbitrary region decomposition in a quadtree plane
- Split each region which violates a uniformity predicate into its 4 quadtree sons
- Merge (recursively) all regions which jointly satisfy a uniformity criterion

Supporting data structure:
Region adjacency graph

11 12 2
14 13
4 3
Maximum-likelihood Edge Finding

Hypothesis test about the likelihood of a boundary between two regions D_1 and D_2

H_0: Pixels from D_1 and D_2 stem from the same statistical source $N(\mu_0, \sigma_0)$
H_{12}: Pixels from D_1 and D_2 stem from different statistical sources $N(\mu_1, \sigma_1)$ and $N(\mu_2, \sigma_2)$, respectively.

Maximum-likelihood decision chooses hypothesis H_i for which

$$P(g_{ij} \text{ are observed } \mid H_i \text{ is true}) \text{ is maximal.}$$

Step 1: Maximum-likelihood estimation of μ_0, σ_0, μ_1, σ_1, μ_2, σ_2

$$\hat{\mu}_i = \frac{1}{|D_i|} \sum_{ij \in D_i} g_{ij} \quad \sigma_i^2 = \frac{1}{|D_i|} \sum_{ij \in D_i} (g_{ij} - \hat{\mu}_i)^2 \quad i = 0, 1, 2$$

Step 2: Determine likelihood quotient

$$\frac{\prod_{g \in D_0} P(g \mid H_0)}{\prod_{g \in D_1} P(g \mid H_1) \prod_{g \in D_2} P(g \mid H_2)} > 1 \quad \text{Decision rule: } \frac{\sigma_1^{k_1}}{\sigma_2^{k_2}} \frac{\sigma_1^{k_1}}{\sigma_0^{k_0}} > S$$

Greyvalue Discontinuities

Edges may be localized via the 1. and 2. derivative of the greyvalue function.

$$\nabla g(x, y) = \frac{\partial g}{\partial x} \hat{x} + \frac{\partial g}{\partial y} \hat{y}$$

edges may be located at ...

... high gradient magnitudes ...

... zero crossings of the second derivative
Are Edges Object Boundaries?

Four reasons for edges in images:

1. Discontinuities of physical object surface properties
e.g. colour, material, smoothness ("reflectivity")
2. Discontinuities of object surface orientation towards observer
e.g. strong curvature, 3D-edges, specularities
3. Discontinuities of illumination
e.g. shadows, secondary illumination
4. Discretization effects
e.g. binarisation

Edges in Real-World Images

Image of Michaelis Church in Hamburg
(thanks to Wolfgang Förstner)

Consider vertical edge with lamps left and right:
In the lower part, the region left of the edge is darker than right the region of the edge, in the upper part vice versa.
=> In between, the edge must have no contrast at all!
Robert’s Cross Operator

<table>
<thead>
<tr>
<th>$g_{i-1,j-1}$</th>
<th>$g_{i-1,j}$</th>
<th>$g_{i,j-1}$</th>
<th>$g_{i,j}$</th>
</tr>
</thead>
</table>

Computes the gradient based on crosswise greyvalue differences

Gradient magnitude

$$| \nabla g_j | = \sqrt{(g_{j-1} - g_{i,j-1})^2 + (g_{i,j} - g_{i-1,j})^2}$$

$$\approx |g_{i,j} - g_{i-1,j}| + |g_{i,j} - g_{i-1,j-1}|$$

Gradient direction

$$\tan \gamma = \frac{g_{i,j} - g_{i-1,j-1}}{g_{i-1,j} - g_{i-1,j-1}}$$

Direction angle γ in coordinate system rotated by 45°

Sobel Operator

Popular operator contained in most image processing software packages

$$\begin{bmatrix} g_6 & g_9 & g_7 \\ g_3 & g_6 & g_0 \\ g_3 & g_2 & g_1 \end{bmatrix} \rightarrow x$$

- Computes gradient components Δx and Δy
 based on pixels taken from a 3x3 neighbourhood.
- Performs simultaneous smoothing

$$\begin{align*}
\Delta g_x &= (g_1 + 2g_0 + g_7) - (g_3 + 2g_4 + g_5) \\
\Delta g_y &= (g_1 + 2g_2 + g_3) - (g_7 + 2g_6 + g_5)
\end{align*}$$

$$| \nabla g_j | = \sqrt{\Delta g_x^2 + \Delta g_y^2}$$

$$\tan \gamma = \frac{\Delta g_y}{\Delta g_x}$$
Example for Sobel Operator

\[g(x, y) \]
greyvalue image

\[0 = \text{black} \]
\[255 = \text{white} \]

\[\Delta g_x \]
x-component of greyvalue gradient

\[0 = \text{greyvalue 128} \]

\[\Delta g_y \]
y-component of greyvalue gradient

\[0 = \text{greyvalue 128} \]

Kirsch Operator

\(g_5 \)	\(g_6 \)	\(g_7 \)
\(g_4 \)	\(g_5 \)	\(g_6 \)
\(g_3 \)	\(g_4 \)	\(g_5 \)

- Computes gradient magnitude in 8 directions, selects maximum
- Performs simultaneous smoothing

Gradient magnitude

\[
|\nabla g| = \max_{k=0,7 \mod 8} \left\{ 3(g_{k} + g_{k+1} + g_{k+2} + g_{k+3} + g_{k+4} - 5(g_{k+5} + g_{k+6} + g_{k+7})) \right\}
\]

Gradient direction

\[
\gamma = (90^\circ + k_{\max} \cdot 45^\circ) \mod 360^\circ
\]

Example:

\[
k_{\max} = 7
\]

\[
\gamma = (90^\circ + 7 \cdot 45^\circ) \mod 360^\circ = 45^\circ
\]
Laplacian Operator

\[\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \]

Orientation-independent measure for the strength of the second derivative of a greyvalue function

Discrete approximation by differences of differences of greyvalues:

\[
\nabla^2 g_{ij} = (g_{i+1,j} - 2g_{ij} + g_{i-1,j}) + (g_{i,j+1} - 2g_{ij} + g_{i,j-1}) - 4g_{ij}
\]

"difference between the greyvalue of a point and the average of its surrounding"

Using the Laplacian operator on raw images will typically give unacceptable results since the 2. derivative amplifies noise. (A single isolated point generates the maximal response.)

Marr-Hildreth Operator

Locates edges at zero crossings of second derivative of smoothed image

Lapacian of Gaussian (LoG):

\[\nabla^2 [f(x,y,\sigma) \ast g(x,y)] \]

with Gaussian filter \(f(x,y) = e^{-\frac{x^2+y^2}{2\sigma^2}} \)

Interchanging the order of differentiation and convolution in the LoG gives

\[\nabla^2 [f(x,y,\sigma) \ast g(x,y)] = h(x,y) \ast g(x,y) \]

\[h(x,y) = c \left(\frac{x^2+y^2}{\sigma^2} \right) e^{-\frac{x^2+y^2}{2\sigma^2}} \]

c normalizes the sum of mask elements to zero

Discrete 5 x 5 approximation

\[
\begin{bmatrix}
0 & 0 & -1 & 0 & 0 \\
-1 & -2 & -1 & 0 & 0 \\
-1 & 16 & -2 & -1 & 0 \\
0 & -1 & -2 & -1 & 0 \\
0 & 0 & -1 & 0 & 0
\end{bmatrix}
\]

Nickname: Mexican Hat Operator
Difference of Gaussians (DoG)

The Marr-Hildreth Operator can be approximated by the difference of 2 Gaussians:

\[h(x, y) = f_1(x, y) - f_2(x, y) \]

The best approximation of the Laplacian is for \(\sigma_2 \approx 1.6 \sigma_1 \)

Canny Edge Detector (1)

Optimal edge detector for step edges corrupted by white noise.

Optimality criteria:
- Detection of all important edges and no spurious responses
- Minimal distance between location of edge and actual edge
- One response per edge only

1. Derivation for 1D results in edge detection filter which can be effectively approximated (< 20% error) by the 1rst derivative of a Gaussian smoothing filter.

2. Generalization to 2D requires estimation of edge orientation:

\[\mathbf{n} = \frac{\nabla(f \ast g)}{\left| \nabla(f \ast g) \right|} \]

\(\mathbf{n} \) normal perpendicular to edge
\(f \) Gaussian smoothing filter
\(g \) greyvalue image

Edge is located at local maximum of \(g \) convolved with \(f \) in direction \(\mathbf{n} \):

\[\frac{\partial^2}{\partial \mathbf{n}^2} f \ast g = 0 \]

"non-maximal suppression"
Canny Edge Detector (2)

Algorithm includes
- choice of scale σ
- hysteresis thresholding to avoid streaking (breaking up edges)
- "feature synthesis" by selecting large-scale edges dependent on lower-scale support

1. Convolve image g with Gaussian filter f of scale σ
2. Estimate local edge normal direction n for each point in the image
3. Find edge locations using non-maximal suppression
4. Compute magnitude of edges by $|\nabla (f \ast g)|$
5. Threshold edges with hysteresis to eliminate spurious edges
6. Repeat steps (1) through (5) for increasing values of σ
7. Aggregate edges at multiple scales using feature synthesis

Examples for Canny Edge Detector

original Canny operator $\sigma = 1.0$ Canny operator $\sigma = 2.8$
(without feature synthesis)