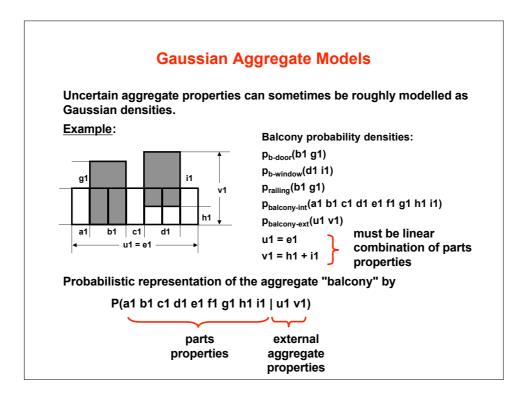
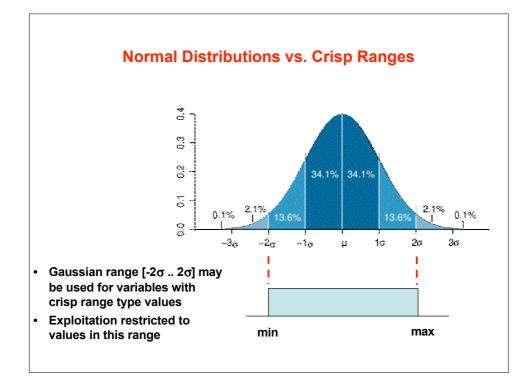


How to Determine Probability Distributions for Aggregates


1. Determine distributions for known crisp aggregates

Two alternative approaches:


- a. Determine JPDs of internal and external properties by statistics (frequentist approach).
- b. Estimate JPDs based on human experiences and the mappings from internal to external properties.

2. Learn aggregate concepts from scratch

- · Observe primitives, determine statistics
- Build aggregate hierarchy by agglomerative clustering (use distance measure to establish Bayesian abstraction)
- · Derive higher-level probabilities from lower-level probabilities

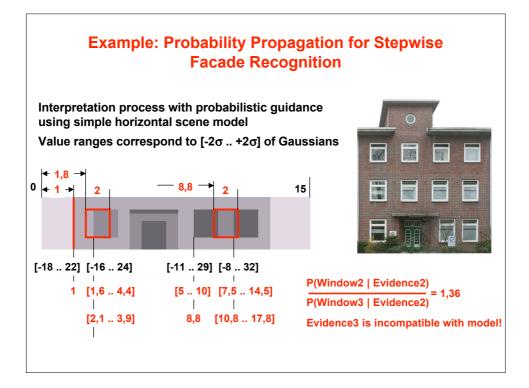
` ~~~i											
`											
`											
	Finatio	n of t		forbo			tion hu	huma	tin		
-			ν(μ, <u>۲</u>)	for ba	icony p	proper	ties by	huma	i estin	ates	
unit =	= 1 dcn	n)									
Mean	c										
	-	•	a1	d1	e1	f1	~1	h1	:4		
1		9	c1	15	39	12	g1 19	12	15	u1 39	2 2
	2	9	5	15	29	12	19	12	15	29	Ζ.
201/0	donoo										
Cova	riances										
	a1	- b1	c1	d1	e1	f1	g1	h1	i1	u1	v
al	a1 6,0	b1 1,2	3,3	6,0	3,5	0,0	0,0	0,0	0,0	3,5	0,
a1 b1	a1 6,0 1,2	- b1 1,2 2,3	3,3 1,2	6,0 5,3	3,5 2,1	0,0 0,0	0,0 0,4	0,0 0,0	0,0 1,2	3,5 2,1	0, 1,
a1 b1 c1	a1 6,0 1,2 3,3	b1 1,2 2,3 1,2	3,3 1,2 6,0	6,0 5,3 6,0	3,5 2,1 3,5	0,0 0,0 0,0	0,0 0,4 0,0	0,0 0,0 0,0	0,0 1,2 0,0	3,5 2,1 3,5	0, 1, 0,
a1 b1 c1 d1	a1 6,0 1,2 3,3 6,0	b1 1,2 2,3 1,2 5,3	3,3 1,2 6,0 6,0	6,0 5,3 6,0 60,0	3,5 2,1 3,5 11,0	0,0 0,0 0,0 0,0	0,0 0,4 0,0 0,0	0,0 0,0 0,0 0,0	0,0 1,2 0,0 8,5	3,5 2,1 3,5 11,0	0, 1, 0, 8,
a1 b1 c1 d1 e1	a1 6,0 1,2 3,3 6,0 3,5	b1 1,2 2,3 1,2 5,3 2,1	3,3 1,2 6,0 6,0 3,5	6,0 5,3 6,0 60,0 11,0	3,5 2,1 3,5 11,0 20,0	0,0 0,0 0,0 0,0 0,0	0,0 0,4 0,0 0,0 0,0	0,0 0,0 0,0 0,0 0,0	0,0 1,2 0,0 8,5 0,0	3,5 2,1 3,5 11,0 20,0	0, 1, 0, 8, 0,
a1 b1 c1 d1 e1 f1	a1 6,0 1,2 3,3 6,0 3,5 0,0	b1 1,2 2,3 1,2 5,3 2,1 0,0	3,3 1,2 6,0 6,0 3,5 0,0	6,0 5,3 6,0 60,0 11,0 0,0	3,5 2,1 3,5 11,0 20,0 0,0	0,0 0,0 0,0 0,0 0,0 1,0	0,0 0,4 0,0 0,0 0,0 0,0	0,0 0,0 0,0 0,0 0,0 0,0	0,0 1,2 0,0 8,5 0,0 0,0	3,5 2,1 3,5 11,0 20,0 0,0	0, 1, 0, 8, 0,
a1 b1 c1 d1 e1 f1 g1	a1 6,0 1,2 3,3 6,0 3,5 0,0 0,0 0,0	b1 1,2 2,3 1,2 5,3 2,1 0,0 0,4	3,3 1,2 6,0 6,0 3,5 0,0 0,0	6,0 5,3 6,0 60,0 11,0 0,0 0,0	3,5 2,1 3,5 11,0 20,0 0,0 0,0	0,0 0,0 0,0 0,0 0,0 1,0 0,0	0,0 0,4 0,0 0,0 0,0 0,0 0,0 0,3	0,0 0,0 0,0 0,0 0,0 0,0 0,0	0,0 1,2 0,0 8,5 0,0 0,0 0,0 0,4	3,5 2,1 3,5 11,0 20,0 0,0 0,0	0, 1, 0, 8, 0, 0, 0,
a1 b1 c1 d1 e1 f1 g1 h1	a1 6,0 1,2 3,3 6,0 3,5 0,0 0,0 0,0 0,0	b1 1,2 2,3 1,2 5,3 2,1 0,0 0,4 0,0	3,3 1,2 6,0 6,0 3,5 0,0 0,0 0,0	6,0 5,3 6,0 60,0 11,0 0,0 0,0 0,0	3,5 2,1 3,5 11,0 20,0 0,0 0,0 0,0	0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0	0,0 0,4 0,0 0,0 0,0 0,0 0,3 0,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0 2,3	0,0 1,2 0,0 8,5 0,0 0,0 0,4 0,0	3,5 2,1 3,5 11,0 20,0 0,0 0,0 0,0	0, 1, 0, 8, 0, 0, 0, 2,
a1 b1 c1 d1 e1 f1 g1	a1 6,0 1,2 3,3 6,0 3,5 0,0 0,0 0,0	b1 1,2 2,3 1,2 5,3 2,1 0,0 0,4	3,3 1,2 6,0 6,0 3,5 0,0 0,0	6,0 5,3 6,0 60,0 11,0 0,0 0,0 0,0 8,5	3,5 2,1 3,5 11,0 20,0 0,0 0,0	0,0 0,0 0,0 0,0 0,0 1,0 0,0	0,0 0,4 0,0 0,0 0,0 0,0 0,0 0,3	0,0 0,0 0,0 0,0 0,0 0,0 0,0	0,0 1,2 0,0 8,5 0,0 0,0 0,0 0,4	3,5 2,1 3,5 11,0 20,0 0,0 0,0	0, 1, 0, 8, 0, 0, 0,

Propagation in Bayesian Compositional Hierarchies with Multivariate Gaussian Distributions

Multivariate Gaussian distribution: $P(\underline{G}) = N(\underline{\mu}_{G}, \Sigma_{G})$

Remember general update formula for an aggregate with probability distribution $P(\underline{A} | \underline{B})$ and change from $P(\underline{B})$ to $P'(\underline{B})$:

 $P'(\underline{A} \ \underline{B}) = P(\underline{A} \ \underline{B}) P'(\underline{B}) / P(\underline{B})$


What is the new mean $\underline{\mu}_{G}$ and covariance Σ_{G} of a multivariate, if the distribution of a subset of the variables changes?

$$\begin{split} \boldsymbol{\Sigma}_{\mathrm{G}} = & |\boldsymbol{\Sigma}_{\mathrm{C}} \quad \boldsymbol{\Sigma}_{\mathrm{CD}}| \quad \boldsymbol{\mu}_{\mathrm{G}} = & |\boldsymbol{\mu}_{\mathrm{C}}| \\ & |\boldsymbol{\Sigma}_{\mathrm{CD}}^{\mathsf{T}} \boldsymbol{\Sigma}_{\mathrm{D}}| & |\boldsymbol{\mu}_{\mathrm{D}}| \end{split}$$

Assume change P(\underline{D}) = N(μ_{D} , Σ_{D}), then the new distribution is N(μ_{G} , Σ_{G})

with $\begin{array}{l} \mu_{\rm C} \stackrel{\prime}{=} \mu_{\rm C} + \Sigma_{\rm CD} \Sigma_{\rm D}^{-1} (\mu_{\rm D} \stackrel{\prime}{=} \mu_{\rm D}) \\ \Sigma_{\rm C} \stackrel{\prime}{=} \Sigma_{\rm C} - \Sigma_{\rm CD} \Sigma_{\rm D}^{-1} \Sigma_{\rm CD}^{-1} + \Sigma_{\rm CD} \Sigma_{\rm D}^{-1} \Sigma_{\rm D} \stackrel{\prime}{=} \Sigma_{\rm CD}^{-1} \Sigma_{\rm D}^{-1} \Sigma_{\rm D} \stackrel{\prime}{=} \end{array}$

=> Closed-form formulas allow efficient probability updates!

