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Probabilistic Aggregate Models

Motivation

• Models for scene interpretation can be conveniently strctured in
compositional and taxonomical hierarchies.

• Properties of aggregate models are often probabilistic in nature

• Probabilities can provide guidance for interpretation steps

=> How can one realize probabilistic inferences based on aggregate
descriptions in a compositional hierarchy?

Animated Slide!
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High-level Knowledge Structure

• Object-centered representations
• Compositional hierarchies with abstraction  =>  aggregates

To interface with human concepts and common knowledge,
a generic approach requires:

Animated Slide!

Evidence Assignment Problem in Facade Domain

To which part of an aggregate should a given evidence be assigned? 

window-view door-view

evidence 1 evidence 2

?

Optimal decision would require
• postponing classification until all evidence is available
• maximization over all reasonable evidence permutations

Assignment problem not encountered in Bayesian decisions or belief
system reasoning!
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Uncertain Decisions in Table-Setting Domain
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assigning evidence
to scene objects
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aggregates

choosing a
specialisation

choosing location
and orientation in
constrained ranges

Frequentist Probabilistic Model

P(A1 ... AN)

P(B)

Basic view:

An aggregate
• is a set of parts which tend to co-occur probabilistically and

together constitute a meaningful entity
• specifies an abstraction from the descriptions of its parts

Example: Bounding-box abstractionB = external
aggregate
properties

A1 ... AN = internal parts properties

There exists a functional mapping  f : A1 ... AN => B

f
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Probabilistic Aggregate Structure

external representation
in terms of aggregate

properties

internal representation
in terms of component

properties

Rimey 93:
Tree-shaped part-of nets, is-a trees,
expected-area nets, and task nets

B

A1 A2 AN• • •

unrealistic conditional
independence:

P(A1 ... AN| B) = P(A1|B) P(A2|B)  ... P(AN|B)

P(A1 ... AN)

P(A1 ... AN| B)

P(B)

Probabilistic Aggregate Hierarchy

P(A1 ... AN)

P(A1 ... AN| B)

P(B)

P(A1 ... AN)

P(A1 ... AN| B)

P(B)

P(A1 ... AN)

P(A1 ... AN| B)

P(B)

. . .

. . .

Simplifying assumptions (initially):

• Distinct names for multiple parts
of the same kind

• Fixed set of parts per aggregate
• No specialization branchings

P(A1 ... AN)

P(A1 ... AN| B)

P(B)

P(A1 ... AN)

P(A1 ... AN| B)

P(B)

P(A1 ... AN)

P(A1 ... AN| B)

P(B)

. . .
P(A1 ... AN)

P(A1 ... AN| B)

P(B)

What are useful (and plausible)
independence assumptions
•   for efficient probabilistic inferences
•   for intuitive aggregate models?
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Bayesian Compositional Hierarchy (1)

Req 1: P( X | succ(X)) = P( X |  Y1 .. YN ) (1)

Aggregate properties do not depend on details below the part properties.

X an aggregate node
Y1 .. YN the parts of X
succ(X) all successors of X

B = E1 D = EN

• • •

E1 ... EN

F

B D

A1 ... AK C1 ... CM

Example:

Given E1 ... EN,
F is independent of all
successors below E1 ... EN

Conditional-independence requirements for a compositional hierarchy to
be an "Bayesian compositional hierarchy":

Bayesian Compositional Hierarchy (2)

Req 2: P( succ(Yi) |  Y1 .. YN ) = P( succ(Yi) | Yi ) (2)

Part properties depend only on the properties of the corresponding
mother aggregate.

B = E1 D = EN

• • •

E1 ... EN

F

B D

A1 ... AK C1 ... CM

Example:

Given B = E1,
A1 ... AK and their successors are
independent of E2 ... EN
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Bayesian Compositional Hierarchy (3)

From (2) and (3) it follows that

P( succ( Y1 .. YN) | Y1 .. YN ) =  Π P( succ(Yi) | Yi )

Req 3: P( succ( Y1 .. YN) |  Y1 .. YN ) =  Π P( succ(Yi) | Y1 .. YN ) (3)

Parts of different aggregates are statistically independent given their
mother aggregates.

B = E1 D = EN

• • •

E1 ... EN

F

B D

A1 ... AK C1 ... CM

Example:

Given E1 ... EN,
 A1 ... AK and their successors are
independent of C1 ... CM and their
successors

Bayesian Compositional Hierarchy (4)

The complete JPD of an abstraction hierarchy can be computed from the
conditional aggregate JPDs.

Probability changes may be propagated along tree-shaped hierarchy.

P(all) = P(X | succ(X)) P(succ(X))
= P(X | Y1 .. YN) P(succ(X)) by Req 1
= P(X | Y1 .. YN)  P( Y1 .. YN succ( Y1 .. YN))
= P(X | Y1 .. YN)  P(succ( Y1 .. YN) | Y1 .. YN )  P(Y1 .. YN )

= P(X | Y1 .. YN)  Π P(succ( Yi) | Yi )  P(Y1 .. YN) by Req 2 + 3

       P(succ(X) | X) = P(Y1 .. YN | X)  Π P(succ( Yi) | Yi )

Recursive application gives:

P( Z0 .. ZM ) = P(Z0)  Π  P( parts(Zi) | Zi )

Z0 is a node and Zi, i = 1 .. M are its successors.
i = 0 ... M
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Alternative Formalization of
Bayesian Compositional Hierarchy

P( Z0 .. ZM  ) = Π  P( Zi | parts(Zi) ) C(parts(Zi) )

where C( Y1 .. YN ) = P( Y1 .. YN ) / Π P(Yi)

External properties Z of an aggregate are determined by the
functional mapping f: parts(Z) => Z

⇒  P(Z | parts(Z) ) is known and fixed

The Bayesian Compositional Hierarchy factorization formula can be
reformulated:

Given the probability distributions of the properties of individual parts,
one can construct a hierarchy bottom-up by determining the
correlations between parts belonging to an aggregate.

⇒  Unsupervised learning of aggregates

Choice of Alternative Specializations

door

balcony-door entrance-doorSpecializing a hypothesis 

there may
be no stairs

there may
be stairs

Disjunctive specializations can be modelled probabilistically, probability
changes of one disjunctive branch may be propagated to the other branch.

Evidence assignment to one disjunctive branch forces specialization
decision and must prohibit evidence assignment to the other branch.

Currently, specialization decisions in SCENIC may be taken top-down,
causing backtracking in the case of a wrong choice.

Aggregates with different cardinalities
may be modelled as disjunctive
specializations  => the same applies.

balcony

balcony with
2 windows

balcony with
1 window
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Top-down Initialization

B = E1 D = EN

• • •

P(F)

P(E1 ... EN | F)

P(E1 ... EN F)

P(E1) • • • P(EN)
=

P(B)

P(A1 ... AK | B)

P(A1 ... AK B)

P(A1) • • • P(AK)

=
P(D)

P(C1 ... CM | D)

P(C1 ... CM D)

P(C1) • • • P(CM)

E1 ... EN

F

B D

A1 ... AK C1 ... CM

Aggregate hierarchy subtree: Sequence of computations:

Change Propagation

B

After initialization, the state of each aggregate is represented by P(A1 ... AN)
with marginalizations P(Ai), i = 1 ... N, and P(B).

A change has to be propagated if P(B) => P´(B) or P(Ai) => P´(Ai), some i.

Crisp evidence e for Ai is modelled as P(Ai = e ) = 1 and P(Ai ≠ e ) = 0.

A1  ...  Ai  ...  AN

P(A1 ... AN B)

Propagating down:
P(B)  =>  P´(B)   
P´(A1 ... AN B) = P(A1 ... AN B) P´(B) / P(B)
followed by marginalizations

Propagating up:
P(Ai)  =>  P´(Ai)
P´(A1 ... AN B) = P(A1 ... AN B) P´(Ai) / P(Ai)
followed by marginalizations
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Preference Computation for Evidence Classification
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• Probabilities within a branch may be compared without
considering the rest of the compositional hierarchy

• Probabilities are updated after each decision and influence the
following decisions

?

Best-first Evidence Classification

Stepwise procedure

A Choose evidence which allows most certain classification
(reducing need for backtracking)

all i ≠ k: P(viewk | e) >> P(viewi | e)

B If there is no probable classification for a given piece of evidence,
-  perform backtracking to revise previous classifications, or
-  request low-level validation of evidence

C Determine revised P(viewi | ej) after each classification
=> evidence propagation in probabilistic hierarchy

D Repeat steps A - D until task is completed
-  evidence is exhausted 
-  scene interpretation is sufficiently certain
-  specific interpretation request can be answered
-  no conceptual model fits evidence
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How to Determine Probability
Distributions for Aggregates

Two alternative approaches:

a. Determine JPDs of internal and external properties by statistics
(frequentist approach).

b. Estimate JPDs based on human experiences and the mappings
from internal to external properties.

1. Determine distributions for known crisp aggregates

2. Learn aggregate concepts from scratch

• Observe primitives, determine statistics

• Build aggregate hierarchy by agglomerative clustering
(use distance measure to establish Bayesian abstraction)

• Derive higher-level probabilities from lower-level probabilities

Gaussian Aggregate Models

Uncertain aggregate properties can sometimes be roughly modelled as
Gaussian densities.
Example:

Balcony probability densities:
pb-door(b1 g1)
pb-window(d1 i1)
prailing(b1 g1)
pbalcony-int(a1 b1 c1 d1 e1 f1 g1 h1 i1)
pbalcony-ext(u1 v1)

u1 = e1
v1 = h1 + i1  

Probabilistic representation of the aggregate "balcony" by

P(a1 b1 c1 d1 e1 f1 g1 h1 i1 | u1 v1)

parts
properties

external
aggregate
properties

a1 b1 c1 d1

g1

h1

i1

u1 = e1

v1

must be linear
combination of parts
properties
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Probabilistic Balcony Description

a1 b1 c1 d1 e1 f1 g1 h1 i1 u1 v1
a1 6,0 1,2 3,3 6,0 3,5 0,0 0,0 0,0 0,0 3,5 0,0
b1 1,2 2,3 1,2 5,3 2,1 0,0 0,4 0,0 1,2 2,1 1,2
c1 3,3 1,2 6,0 6,0 3,5 0,0 0,0 0,0 0,0 3,5 0,0
d1 6,0 5,3 6,0 60,0 11,0 0,0 0,0 0,0 8,5 11,0 8,5
e1 3,5 2,1 3,5 11,0 20,0 0,0 0,0 0,0 0,0 20,0 0,0
f1 0,0 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0
g1 0,0 0,4 0,0 0,0 0,0 0,0 0,3 0,0 0,4 0,0 0,4
h1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 2,3 0,0 0,0 2,3
i1 0,0 1,2 0,0 8,5 0,0 0,0 0,4 0,0 6,0 0,0 6,0
u1 3,5 2,1 3,5 11,0 20,0 0,0 0,0 0,0 0,0 20,0 0,0
V1 0,0 1,2 0,0 8,5 0,0 0,0 0,4 2,3 6,0 0,0 8,3

a1 b1 c1 d1 e1 f1 g1 h1 i1 u1 v1
5 9 5 15 39 12 19 12 15 39 27

Means

Covariances

Specification of N(µ, Σ) for balcony properties by human estimates
(unit = 1 dcm)

Normal Distributions vs. Crisp Ranges

• Gaussian range [-2σ .. 2σ] may
be used for variables with
crisp range type values

• Exploitation restricted to
values in this range min max
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Propagation in Bayesian Compositional Hierarchies
with Multivariate Gaussian Distributions

Multivariate Gaussian distribution:  P(G) = N(µG, ΣG)

Remember general update formula for an aggregate with probability
distribution P(A B) and change from P(B) to P´(B):

P´(A B) = P(A B) P´(B) / P(B)

What is the new mean µG´ and covariance ΣG´ of a multivariate, if the
distribution of a subset of the variables changes?

ΣG = | ΣC ΣCD | µG = | µC |
| ΣCD

T ΣD   | | µD |

Assume change P(D´) = N(µD´, ΣD´), then the new distribution is N(µG´, ΣG´)

 with µC´ = µC + ΣCD ΣD
-1 (µD´- µD)

ΣC´ = ΣC - ΣCD ΣD
-1 ΣCD

T + ΣCD ΣD
-1 ΣD´ ΣD

-1 ΣCD
T

ΣCD´ = ΣCD ΣD
-1 ΣD´

=> Closed-form formulas allow efficient probability updates!

Example: Probability Propagation for Stepwise
Facade Recognition

Interpretation process with probabilistic guidance
using simple horizontal scene model
Value ranges correspond to [-2σ .. +2σ] of Gaussians

[-8 .. 32]

0 15

[-11 .. 29]

28,8

P(Window2 | Evidence2)

P(Window3 | Evidence2)
= 1,36

[-16 .. 24][-18 .. 22]

[7,5 .. 14,5][5 .. 10][1,6 .. 4,4]

8,8 [10,8 .. 17,8][2,1 .. 3,9]

2
1,8

Evidence3 is incompatible with model!

1

1


