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Logics of Image Interpretation
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Describing Image Interpretation in
Logical Terms

deduction
"from the evidence
I conclude that this
is a table"

?

model
construction

"my conceptual model of
a table + hypothesised
scene components
explain the evidence"

!

Reiter & Mackworth 87, Matsuyama 90, Schröder 99

In 2D images (with possible occlusions) we never see the complete 3D reality.

Animated slide!
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Definition of Model Construction

An interpretation  I = [ D, ϕ, π ] of a logical language maps
-  constant symbols of the language into individuals of a real-world domain D
-  N-ary predicate symbols of the language into predicate functions over DN

A model of some clauses is an interpretation for which all clauses are true.

How to do model construction:

• Establish mapping ϕ by assigning segmentation results to constant
symbols

• Establish mapping π by assigning computational procedures to
predicate symbols

• Construct model by finding clauses which are true

Deciding whether a model exists is undecidable in FOPC!
There may be infinitely many models!
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Some Problems with Model Construction
for Scene Interpretation

Mapping ϕ
Establish mapping between real-world objects (as delivered by image
analysis procedures) and constant symbols (as used in symbolic
knowledge representation)
Problems: Segmentation performance, real-world objects not visible in a scene

Mapping π
Establish mapping between procedures which compute real-world
relations (e.g. "touch") and predicate symbols of symbolic knowledge
representation.
Problems: View-based procedures vs. 3D real-world relations, classification
uncertainty

True clauses
Establish that all clauses of the symbolic knowledge base are true for the
mappings ϕ and π.
Problems: Many clauses of the knowledge base may be irrelevant for a
concrete scene. A partial model may suffice for the vision task on hand.
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So what is a Scene Interpretation?

Intuitively:
A scene interpretation is a scene description in terms of instantiated
concepts consistent with evidence and context information.

real world

concepts context hypotheses evidence

constructed
model

not all concepts
are important

not all evidence
is important

Animated slide!
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Partial Models
It seems plausible that a scene interpretation must not be proved to be
consistent with all clauses of the conceptual knowledge base.

Example:  Outdoor knowledge (e.g. about street traffic behavior) may not
be relevant for indoor scenes (e.g. setting a table).

But there may be scenes where knowledge beyond the concrete scene
may influence the interpretation.

Example:  Knowing that a person has arrived outside of a house may
affect the expected behavior of persons inside.

A good knowledge base provides aggregate concepts for all interrelated
entities, often overlapping specific domains. In general, any two
conceptual entities may be (indirectly) structurally connected (s. example
next slide).

Partiality of scene interpretations depends on vision goals and context,
not on structural boundaries of the conceptual knowledge base.
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Interrelated Domains

let-in-a-
visitor

go-to-
door

open-
door

lay-
table

watch-TV

indoor-
behavior

visit-a-friendgo-
shopping

enter-
house

outdoor-
behavior

drive-to-
friend

ring-
bell

hear-
bell

notify-
by-bell

welcome part-of
is-a

Conceptual entities in seemingly disjoint domains may be interrelated,
hence model construction for scene interpretations cannot be restricted
by obvious boundaries.
Example: Outdoor behavior connected to indoor behavior
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Finite Model Construction
(Reiter & Mackworth 87)

• An image consists of regions and chains (edges)
• The image elements constitute all constant symbols of an

interpretation (domain closure assumption)
• Different constant symbols denote different image elements and vice

versa (unique name assumption)

Problem can be expressed in Propositional Calculus and solved as a
constraint satisfaction problem.

For MAPSEE, scene interpretation amounts to finding a mapping p for
predicates road, river, shore, land, water.
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Constructing Partial Models

Evidence matching
Assign evidence to object view classes or verify view hypotheses.
Aggregate instantiation
Infer an aggregate from (not necessarily all) parts.
Instance specialization
Refine instances along specialisation hierarchy or in terms of aggregate parts.
Instance expansion
Instantiate parts of an instantiated aggregate.
Instance merging
Merge identical instances constructed by different interpretation steps.  

If image analysis provides the intended mappings ϕ and π from symbols
into a real-world domain, model construction amounts to instantiating
clauses of the conceptual knowledge base such that all clauses are true.

The interpretation steps introduced earlier allow to instantiate all
concepts of the knowledge base.
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Practical Requirements for
Partial Logical Models

• Task-dependent scope and abstraction level
- no need for checking all predicates
  e.g. propositions outside a space and time frame may be uninteresting
- no need for maximal specialization
   e.g. geometrical shape of "thing" suffices for obstacle avoidance

• Partial model may not have consistent completion
- uncertain propositions due to inherent ambiguity
- predictions may be falsified

• Real-world agents need single "best" scene interpretation
- requires uncertainty rating for evidence and context (propositions)
- requires preference measure for scene interpretations

Logical model property provides only loose frame for possible
scene interpretations.
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Example for Stepwise Model Construction
place-cover

plate

move

plate-transport 

transport

plate-view

agent cup

cup-view

cup-transport

agent-view

agent-move

move1move2

place-cover

transport2 transport1

plate1agent1

viewtrack

track2 track1

view2 view1

move3move4

cup1

track3track4

agent2

view3view4

track4 track3

part-of

is-a

instance
Interpreting a place-cover occurrence

conceptual
knowledge base

12

Description Logics
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Description Logics for
Knowledge Representation

DLs are a family of knowledge-representation formalisms

• object-centered, roles and features (binary relations)

• necessary vs. sufficient attributes

• inference services
– subsumption check
– consistency check
– classification
– abstraction
– default reasoning
– spatial and temporal reasoning

• guaranteed correctness, completeness, decidability and
complexity properties

• highly optimized implementations (e.g. RACER)

14

Development of Description Logics

There exist several experimental and commercial developments of DLs,
among them
• KL-ONE first conception of a DL (1985)
• CLASSIC commercial implementation by AT&T
• LOOM experimental system at USC
• FaCT experimental and commercial system (Horrocks, Manchester)
• RACER experimental and commercial system (Haarslev & Moeller)

There is active research on DLs:
• extending the expressivity of concept languages
• decidability and tractability of inference services
• integration of predicates over concrete domains (e.g. numbers)
• highly optimized implementations
• developing new inference services (e.g. for scene interpretation)

The Description Logic Handbook
F. Baader, D. Calvanese, D. MacGuinness, D. Nardi, P. Patel-Schneider (eds.)
Cambridge University Press, 2003
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The RACER DL-System

• Highly expressive DL ALCQHIR+
-   Role hierarchies with multiple parents

 -   Qualified number restrictions (≥ n r C) (≤ n r C),
-   Inverse roles, transitive Roles
-   Integers and reals

• Available as product RacerPro (http://www.racer-systems.com)
-  Reasoner for the Semantic Web languages OWL/RDF
-  Evaluation copy for university research
-  Comprehensive manual

• Developed in the Cognitive Systems Laboratory at Hamburg University
Research applications in
-  information management: TV-Assistant
-  content-based image retrieval
-  scene interpretation

see http://www.racer-systems.com/
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RACER Concept Language

C  concept term
CN  concept name
R role term
RN role name

C  -> CN
*top*
*bottom*
(not  C)
(and  C1 ... Cn)
(or  C1 ... Cn)
(some  R C)
(all  R  C)
(at-least  n  R)
(at-most  n  R)
(exactly  n  R)
(at-least  n  R  C)
(at-most  n  R  C)
(exactly  n  R  C)
CDC

concept definition
(equivalent CN C)

concept axioms
(implies CN C)
(implies C1 C2)
(equivalent C1 C2)
(disjoint C1 ... Cn)

roles
R  -> RN

(RN role-props)
role-props ->

((:transitive t)
 (:feature t)
 (:symmetric t)
 (:reflexive t)
 (:inverse CN)
 (:domain CN)
 (:range CN))

concrete-domain concepts
AN attribute name
CDC  -> (a  AN)

(an  AN)
(no  AN)
(min  AN  integer)
(max  AN  integer)
(>  aexpr  aexpr)
(>=  aexpr  aexpr)
(<  aexpr  aexpr)
(<=  aexpr  aexpr)
(=  aexpr  aexpr)

aexpr  -> AN
real
(+ aexpr1 aexpr1*)
aexpr1

aexpr1 -> real
AN
(* real AN)
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Family of Description Logics
AL
Attribute Language   ∀ ∩

ALC
Complement

ALC(D)
concrete Domains  D, P

ALCRP(D)
Roles defined wrt Predicates

ALCNF  (KRIS)
Number restrictions (≥ n r) (≤ n r)
Features with same-as

ALCQRIFO   (LOOM)
Qualified number restrictions (≥ n r C)(≤ n r C)
Role conjunction, Inverse roles
Features with same-as, One-of, fills

ALCHfR+  (FaCT)
role Hierarchies with multiple parents
features without same-as
transitive Roles

ALNFIh  (CLASSIC)
Number restrictions (≥ n r) (≤ n r)
Features with same-as, Inverse
hierarchies with single inheritance

ALCNHR+  (RACE)
role Hierarchies with multiple parents
Number restrictions (≥ n r) (≤ n r)
transitive Roles

ALCQHIR+  (RACER)
role Hierarchies with multiple parents
 Qualified number restrictions (≥ n r C) (≤ n r C)
Inverse roles, transitive Roles, integers and reals
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Primitive and Defined Concepts

The main building blocks are primitive oder defined concepts.

Primitive concepts: concept => satisfied properties and relations

satisfied properties and relations are necessary conditions
for an object to belong to a class

Defined concepts: concept <=> satisfied properties and relations

satisfied properties and relations are necessary and sufficient
conditions for an object to belong to a class

Primitive  concept "person":
(implies person (and human (some has-gender (or female male))))

Defined concept "parent":
(equivalent parent (and person (some has-child person)))

Concept expressions of a DL describe classes of entities in terms of
properties (unary relations) and roles (binary relations).
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Example of a TBox

concepts

(signature :atomic-concepts (person human female male woman man parent
mother father grandmother aunt uncle sister brother)

:roles ((has-child :parent has-descendant)
(has-descendant :transitive t)
(has-sibling)
(has-sister :parent has-sibling)
(has-brother :parent has-sibling)
(has-gender :feature t)))

(implies person (and human (some has-gender (or female male))))
(disjoint female male)
(implies woman (and person (some has-gender female)))
(implies man (and person (some has-gender male)))
(equivalent parent (and person (some has-child person)))
(equivalent mother (and woman parent))
(equivalent father (and man parent))
(equivalent grandmother (and mother (some has-child (some has-child person))))
(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))
(equivalent brother (and man (some has-sibling person)))
(equivalent sister (and woman (some has-sibling person)))

Signature of TBox

Concept axioms

20

Concept and Role Hierachies
Implied by TBox

*top*

human

person

parent

mother

grandmother

*bottom*

man woman

brother father sister

auntuncle female

*r*

has-gender! has-sibling has-descendant*

has-brotherhas-sister has-child

*r* universal role
! attribute (feature)
* transitive role

male
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TBox Inferences
A DL system offers several inference services. At the core is a
consistency test:

?C *bottom*  (the empty concept)

Example: (and (at-least 1 has-child) (at-most 0 has-child))       *bottom*

Consistency checking is the basis for several other inference services:

• subsumption
(implies C1 C2)  <=>  (and C1 (not C2))        *bottom*

• classification of a concept expression
searches the existing concept hierarchy for the most special concept
which subsumes the concept expression

22

Formal Semantics of
Concept Expressions

D Set of all possible domain objects

Extension of a concept expression C
(represents meaning of C)

Extension of a role RN
(represents meaning of RN)

Formal semantics of concept operations:

E[*bottom*] = { }

E[ (and C1 ... Cn) ] = E[C1] ∩  ... ∩  E[Cn]

E[ (or C1 ... Cn) ] = E[C1]                E[Cn]

E[ (all RN C) ] =

E[ (some RN C) ] =

E C[ ]⊆D

E RN[ ]⊆ D ×D

∪ ... ∪

  

� 

x |  ∀(x,  y) ∈ E RN[ ] ⇒ y ∈ E C[ ]{ }
x |  ∃(x, y)∈E RN[ ] ∧ y∈E C[ ]{ }
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ABox of a Description Logic System

TBox = terminological knowledge (concepts and roles)
ABox = assertional knowledge (facts)

An ABox contains:
- concept assertions (instance IN C)

individual  IN is instance of a concept expression C

- role assertions (related IN1 IN2 RN)
individual IN1 is related to IN2 by role RN

• An ABox always refers to a particular TBox.
• An ABox requires unique names
• ABox facts are assumed to be incomplete (OWA).

OWA = Open World Assumption
(new facts may be added, hence inferences are restricted)

CWA = Closed World Assumption
(no facts may be added)

24

ABox Inferences

ABox inferences = inferring facts about ABox individuals

Typical queries:

• consistency is ABox consistent?

• retrieval which individuals satisfy a concept expression?

• classification what are the most special concept names which
describe an individual?

ABox consistency checking is in general more complicated than
TBox consistency checking.

ABox consistent  <=>  there exists a "model" for ABox and TBox

All ABox inferences are based on the ABox consistency check.
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Contents of ABox
(instance alice mother)
(related alice betty has-child)
(related alice charles has-child)
(instance betty mother)
(related betty doris has-child)
(related betty eve has-child)
(instance charles brother)
(related charles betty has-sibling)
(instance charles (at-most 1 has-sibling))
(related doris eve has-sister)
(related eve doris has-sister)

doris

betty: mother

alice: mother eve

charles: (and brother (at-most 1 has-sibling))

has-
child

has-
child

has-
sister

has-
child

has-
child

has-
sibling

Questions and answers
(individual-instance? doris woman) Is doris instance of the concept woman?
T

(individual-types eve) Of which concept names is eve an instance?
((sister) (woman) (person) (human) (*top*))

(individual-fillers alice has-descendant) What are the descendants of eve?
(doris eve charles betty)

(concept-instances sister) Which instances has the concept sister?
(doris betty eve)

Example of ABox Queries

26

Table-Top Scene Description

(equivalent  cover
(and  configuration

(exactly  1  has-part  plate)
(exactly  1  has-part  (and  saucer  (some  near plate)))
(exactly  1  has-part  (and  cup  (some  on  saucer)))

TBox (excerpt):

ABox (excerpt):
(instance  plate1  plate)
(instance  saucer1  saucer)
(instance  saucer2  saucer)
(instance  cup1  cup)
(instance  cup2  cup)
(instance napkin1 napkin)
(instance cover1 cover)
(related  saucer1  plate1  near)
((related  cup1  saucer1  on)
(related  napkin1  plate1  on)

(implies plate dish)
(implies saucer dish)
(implies cup dish)
(implies napkin cloth)
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Queries for Table-Top Scene
Description

Queries:

(concept-instances cover)
⇒ (cover1)

(concept-instances (some on dish))
⇒ (cup1 napkin1)

(concept-instances (and cloth (some on plate))
⇒ (napkin1)

(concept-instances (not (some on saucer)))
⇒ ( ) for OWA - a fact  (related (cup2 saucer3 on))  could be added
⇒ (cup2) for CWA 
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RACER Query Language

(retrieve  <list-of-objects>   <query-body>) 

Interface language for retrieving patterns from an ABox

Example:

(retrieve  (?x ?y ?z)  (and (?x  plate)
(?y  saucer)
(?z cup)
(?x  ?y  near)
(?z  ?y  on)))

(((?x  plate1)  (?y  saucer1)  (?z  cup1))
 ((?x  plate2)  (?y  saucer2)  (?z  cup2)))

Basic retrieval command:

Note:  Query language retrieval commands allow to retrieve patterns
for which no individuals have been introduced.
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Useful Extensions
Feature chains: (compose F1 ... Fn) short:  (F1 o ... o Fn)
The composition of features F1 ... Fn is a feature whose fillers are the fillers of Fn
applied to the fillers of Fn-1 applied to ... the fillers of F1.

Feature (chain) agreement:  (same-as F1 F2) short:  (=  F1 F2)
Concept expression for elements which possess the same fillers for features F1 and
F2.
Example:  (same-as  (has-plate o has-colour)  (has-saucer o has-colour))
Requirement for a cover that plate and saucer have the same colour

Cannot be combined with expressive DLs without jeopardising decidability!

Instead of features, also roles may be composed, and a subset operator
relates role-fillers similar to same-as for features.
Role-value map:  (subset R1 R2)
Concept expression of elements where the fillers of role R1 are a subset of the fillers
of role R2.

Causes undecidability even in DLs with low expressivity (e.g. CLASSIC).
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Abstraction with Description Logics
Abstraction = omission of properties or relations, extending a concept, 

generalization

Examples:

• Superordinate concept name of a concept expression
(= concept classification)
(and person (some has-size tall)) →   person

• Generalization of concept expressions
(and (some has-occupation professor) (at-least 3 has-child))

(and (some has-occupation civil-servant) (at-least 1 has-child))

• Concept expression which subsumes several individuals
1. classify individuals
2. determine least common subsumer (LCS)

-  for RACER:  trivial solution in terms of  (OR C1 ... Cn)
-  for DLs without OR:  special abstraction operator LCS


