

Some Problems with Model Construction for Scene Interpretation

Mapping ϕ

Establish mapping between real-world objects (as delivered by image analysis procedures) and constant symbols (as used in symbolic knowledge representation)

Problems: Segmentation performance, real-world objects not visible in a scene

Mapping π

Establish mapping between procedures which compute real-world relations (e.g. "touch") and predicate symbols of symbolic knowledge representation.

<u>Problems</u>: View-based procedures vs. 3D real-world relations, classification uncertainty

True clauses

Establish that all clauses of the symbolic knowledge base are true for the mappings ϕ and $\pi.$

<u>Problems</u>: Many clauses of the knowledge base may be irrelevant for a concrete scene. A partial model may suffice for the vision task on hand.

Description Logics for Knowledge Representation

DLs are a family of knowledge-representation formalisms

- object-centered, roles and features (binary relations)
- · necessary vs. sufficient attributes
- inference services
 - subsumption check
 - consistency check
 - classification
 - abstraction
 - default reasoning
 - spatial and temporal reasoning
- guaranteed correctness, completeness, decidability and complexity properties
- highly optimized implementations (e.g. RACER)

13

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	concept definition (equivalent CN C) concept axioms (implies CN C) (implies C1 C2) (equivalent C1 C2) (disjoint C1 Cn) roles R -> RN (RN role-props) role-props -> ((:transitive t) (:feature t) (:reflexive t) (:inverse CN) (:domain CN)	concrete-domain concepts ANattribute nameCDC -> (a AN) (an AN) (no AN) (min AN integer) (max AN integer) (> aexpr aexpr) (> aexpr aexpr) (<= aexpr aexpr) (<= aexpr aexpr) (<= aexpr aexpr) (= aexpr aexpr) aexpr -> AN real (+ aexpr1 aexpr1*) aexpr1 aexpr1 -> real AN (* real AN)
---	---	--

Concept expressions of a DL describe classes of entities in terms of properties (unary relations) and roles (binary relations).		
The main building bl	ocks are primitive oder defined concepts.	
Primitive concepts:	concept => satisfied properties and relations	
	satisfied properties and relations are <u>necessary</u> conditions for an object to belong to a class	
Defined concepts:	concept <=> satisfied properties and relations	
	satisfied properties and relations are <u>necessary and sufficie</u> conditions for an object to belong to a class	

(signature	atomic:	-concepts (person human female mal mother father grandmothe ((has-child :parent has-descendant) (has-descendant :transitive t) (has-sibling) (has-sister :parent has-sibling) (has-brother :parent has-sibling) (has-gender :feature t)))	le woman man parent r aunt uncle sister brother) Signature of TBox
(implies pers (disjoint fem (implies won (equivalent p (equivalent n (equivalent f (equivalent g (equivalent a (equivalent t	son (and) ale male) nan (and a (and per parent (an nother (an ather (and yrandmot unt (and uncle (and	human (some has-gender (or female r person (some has-gender female))) rson (some has-gender male))) nd person (some has-child person))) nd woman parent)) d man parent)) her (and mother (some has-child (som woman (some has-sibling parent))) d man (some has-sibling parent)))	nale)))) Concept axioms ne has-child person))))

