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Mobile Robot Localization

Given a map of the environment, how can a robot determine its pose
(planar coordinates + orientation)?

Two sources of uncertainty:

- observations depend probabilistically on robot pose
- pose changes depend probabilistically on robot actions

Example:
Uncertainty of robot position
after travelling along red path
( shaded area indicates
probability distribution)

Slides on Robot Localization are partly adapted from

Sebastian Thrun, http://www-2.cs.cmu.edu/~thrun/papers/thrun.probrob.html
Michael Beetz, http://wwwradig.in.tum.de/vorlesungen/as.SS03/folien_links.html
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Formalization of Localization Problem
m model of environment (e.g. map)
st pose at time t
ot observation at time t
at action at time t
d0...t = o0, a0, o1, a1, ... , ot, at 

observation and action data up to t

Task:  Estimate p(st | d0...t, m) = bt(st)  "robot´s belief state at time t"

Markov properties:

• Current observation depends only on current pose

• Next pose depends only on current pose and current action

"Future is independent of past given current state" 

Markov assumption implies static environment!
(Violation, for example, by robot actions changing the environment)
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Structure of Probabilistic Localization

S1 S2 S3 St• • •

o1 o2 o3 ot• • •

a1 a2 a3 at-1• • •

mmap

observations

poses

actions
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Recursive Markov Localization

bt(st) = p(st | o0, a0, o1, a1, ... , at-1, ot, m)

= t p(ot | o0, a0, ... , at-1, st, m)  p(st | o0, a0, ... , at-1, m)

= t p(ot | st, m)  p(st | o0, a0, ... , at-1, m)

= t p(ot | st, m)   p(st | o0, a0, ... , at-1, st-1, m)  p(st-1 | o0, a0, ... , at-1, m) dst-1

= t p(ot | st, m)   p(st |  at-1, st-1, m)  p(st-1 | o0, a0, ... , at-1, m) dst-1

= t p(ot | st, m)   p(st |  at-1, st-1, m)  bt-1(st-1) dst-1

t is normalizing factor

Bayes

Markov

Total Prob.

Markov

bt(st)  =  t p(ot | st, m)   p(st | at-1, st-1, m)  bt-1(st-1) dst-1

p(ot | st, m) probabilistic perceptual model -
often time-invariant:  p(o | s, m)

p(st |  at-1, st-1, m) probabilistic motion model -
often time-invariant:  p(s´| a, s, m)
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Probabilistic Sensor Model for
Laser Range Finder
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measured distance o [cm]

probability p(o | s)

Adapted from: Sebastian Thrun, Probabilistic Algorithms in Robotics
http://www-2.cs.cmu.edu/~thrun/papers/thrun.probrob.html

sensor properties can
often be approximated
by Gaussian mixture
densities
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Grid-based Markov Localization
(Example 1)

•
•
••

robot path with 4
reference poses,
initially belief is

equally distributed

distribution of
belief at second

pose

distribution of
belief at third

pose

distribution of
belief at fourth

pose

Ambiguous localizations due to a repetitive and symmetric environment are
sharpened and disambiguated after several observations.
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Grid-based Markov Localization
(Example 2)

map and robot path maximum position
probabilities after 6 steps

maximum position
probabilities after 12 steps

[Burgard et al. 96]
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Approximating Probabilistic Update by
Monte Carlo Localization (MCL)

"Importance Sampling"
"Particle Filters"
"Condensation Algorithm"

different names for a method to approximate
a probability density by discrete samples
(see slide "Sampling Methods")

Approximate implementation of belief update equation
bt(st)  =  t p(ot | st, m)   p(st | at-1, st-1, m)  bt-1(st-1) dst-1

1. Draw a sample st-1 from the current belief bt-1(st-1) with a likelihood given by the
importance factors of the belief bt-1(st-1).

2. For thisst-1 guess a successor pose st according to the distribution p(st | at-1, st-1, m).

3. Assign a preliminary importance factor p(ot | st, m) to this sample and add it to the
new sample ser representing bt(st).

4. Repeat  Step 1 through 3 m times. Finally, normalize the importance factors in the
new sample set bt(st) so that they add up to 1.

MCL is very effective and can give good results with as few as 100 samples.
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Simultaneous Localization and
Mapping (SLAM)

Typical problem for a mobile robot in an unknown environment:

•  learn the environment ("mapping")
•  keep track of position and orientation ("localization")

"Chicken-and-egg" problem:

•  robot needs knowledge of environment in order to interpret sensor
readings for localization

• robot needs pose knowledge in order to interpret sensor readings for
mapping

Make the environment a multidimensional probabilistic variable!

Example:  Model of environment is a probabilistic occupancy grid

Pij =  eij  (xi, yi)  is empty
1-eij   (xi, yi)  is occupied
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Bayes Filter for SLAM
Extend the localization approach to simultaneous mapping:

bt(st)  =  t p(ot | st, m)   p(st | at-1, st-1, m)  bt-1(st-1) dst-1

bt(st, mt)  =  t p(ot | st, mt)   p(st, mt | at-1, st-1, mt-1)  bt-1(st-1, mt-1)  dst-1 dmt-1

Assuming a time-invariant map:

bt(st, m)  =  t p(ot | st, m)   p(st, mt | at-1, st-1, m)  bt-1(st-1, m) dst-1

bt(st, m) is (N+3)-dimensional with N variables for m (N >> 1000) and 3 for st  
=>  complexity problem 

Important approaches to cope with this complexity:

• Kalman filtering (Gaussian probabilities and linear updating)
• estimating only the mode of the posterior, argmaxm b(m)
• treating the robot path as "missing variables" in Expectation Maximization
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Kalman Filter for SLAM Problems (1)

Basic Kalman Filter assumptions:

1. Next-state function is linear with added Gaussian noise
2. Perceptual model is linear with added Gaussian noise
3. Initial uncertainty is Gaussian

Ad 1)  Next state in SLAM is pose st and model m.
•  m is assumed constant
•  st is non-linear in general, approximately linear in a first-degree
   Taylor series expansion ("Extended Kalman Filtering")

Let xt be the state variable (st, m) and control Gaussian noise with
covariance control, then

p(xt | at-1, xt-1) = A xt-1 + B at-1 + control

Ad 2) Sensor measurements are usually nonlinear in robotics, with non-
white Gaussian noise. Approximation by first-degree Taylor series
and measure Gaussian noise with covariance measure.

p(ot | xt) = C xt + measure
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Kalman Filter for SLAM Problems (2)

Bayes Filter equation  

bt(st, m)  =  t p(ot | st, m)   p(st, mt | at-1, st-1, m)  bt-1(st-1, m) dst-1 

can be rewritten using the standard Kalman Filter equations:  

µ´t-1 = µt-1 + B at

´t-1 = t-1 + control

Kt = ´t-1 CT  (C ´t-1CT + measure)-1

µt = µ´t-1 + Kt (ot-1 - Cµ´t-1)

t = (I - Kt C) ´t-1

Compare with slides on Kalman Filtering in "Bildverarbeitung".

• Kalman Filtering estimates the full posterior distribution for all poses
(not only the maximum)

• Guaranteed convergence to true map and robot pose

• Gaussian sensor noise is a bad model for correspondence problems
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Example: Underwater Sonic Mapping
From: S.Williams, G. Dissanayake, and H.F. Durrant-Whyte. Towards terrain-aided
navigation for underwater robotics. Advanced Robotics, 15(5), 2001.

Kalman Filter map and
pose estimation

Figure shows:

•  estimated path of
underwater vehicle with
ellipses indicating position
uncertainty

•  14 landmarks obtained
by sonar measurements
with ellipses indicating
uncertainty, 5 artificial
landmarks, the rest other
reflective objects

•  additional dots for weak
landmark hypotheses
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Solving the Correspondence Problem

Map obtained from raw sensory
data of a cyclic environment
(large hall of a museum) based
on robot´s odometry

correspondence problem!

Map obtained by EM algorithm:
Iterative maximization of both
robot path and model

non-incremental procedure!
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Mapping with Expectation
Maximization

Principle of EM mapping algorithm:

Repeat until no more changes

E-step: Estimate robot poses for given map

M-step: Calculate most likely map given poses

The algorithm computes the maximum of the expectation of the joint log
likelihood of the data dt = {a0, o0, ... , at, ot} and the robot´s path st = {s0, ... , st}.

mi+1[ ] = argmax
m

E
s t
logp dt,st | m( ) |m i[ ],dt[ ]

m i+1[ ] = argmax
m

p s | m i[ ] ,dt( ) logp(o | s ,m) ds

E-step: Compute the posterior of pose s  based on m[i] and all data
including t >  :   =>   different from incremental localization

M-step: Maximize log p(o  | s , m) for all  and all poses st under the
expectation calculated in the E-step
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Mapping with Incremental
Maximum-Likelihood Estimation

Stepwise maximum-likelihood estimation of map and pose is inferior to
Kalman Filtering and EM estimation, but less complex.

Obtain series of maximum-likelihood maps and poses
m1*, m2*, ...
s1*, s2*, ...

by maximizing the marginal likelihood:
<mt*, st*> = argmax p(ot | mt, st) p(mt, st | at, st-1*, mt-1*)

mt, st

This equation follows from the Bayes Filter equation by assuming that
map and pose at t-1 are known for certain.

• real-time computation possible
• unable to handle cycles
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Example of Incremental Maximum-
Likelihood Mapping

At every time step, the map is grown by finding the most likely continuation.
Map estimates do not converge as robot completes cycle because of
accumulated pose estimation error.

Examples from: Sebastian Thrun, Probabilistic Algorithms in Robotics
http://www-2.cs.cmu.edu/~thrun/papers/thrun.probrob.html
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Maintaining a Pose Posterior
Distribution

p(st | ot, at )  =   p(ot | st)   p(st | at-1, st-1)  p(st-1 | ot-1, at-1 ) dst-1

Problems with cyclic environment can be overcome by maintaining not
only the maximum-likelihood pose estimate at t-1 but also the uncertainty
distribution using Bayes Filter:

Last example repeated, representing the pose posterior by particles.
Uncertainty is transferred onto map, so major corrections remain possible.
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Estimating Probabilities from a Database

Given a sufficiently large database with tupels a(1) ... a(N) of an unknown
distribution P(X), we can compute maximum likelihood estimates of all
partial joint probabilities and hence of all conditional probabilities.

Xm1
, ... , XmK

 = subset of X1, ... XL with K  L

wa = number of tuples in database with Xm1
=am1

, ... , XmK
=amK

N   = total number of tuples

If a priori information is available, it may be introduced via a bias ma : 

      P´(Xm1
=am1

, ... , XmK
=amK

) = (wa + ma) / N

Often ma = 1 is chosen for all tupels a to express equal likelihoods in the
case of an empty database.

Maximum likelihood estimate of P(Xm1
=am1

, ... , XmK
=amK

) is

      P´(Xm1
=am1

, ... , XmK
=amK

) = wa / N
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Idea of Expectation Maximization
Consider the problem of fitting 3 straight lines to data, not knowing which
data belong to which line.
(Example by Anna Ergorova, FU Berlin)

Algorithm:
A Select 3 random lines initially
B Assign data points to each line by minimum distance criterion
C Determine best-fitting straight line for assigned data points
D Repeat B and C until no further changes occur

1. Iteration (after B) 1. Iteration (after C) 6. Iteration (after B)
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Learning Mixtures of Gaussians

Determine Gaussian mixture distribution with K multivariate Gaussians
which best describes given data  =>  unsupervised clustering
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•
•
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•
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•

x1

x2

p(x) =      wi N(µi, i)
i=1 .. K

i=1 .. K
with      wi = 1

Multivariate Gaussian mixture distribution:

A Select wi, µi and i, i = 1 .. K, at random (K is given)
B For each datum xj compute probability pij that xj was generated by

N(µi, i):

C Compute new weights wi', mean µi', and covariance i' by maximum
likelihood estimation:

D Repeat B and C until no further changes occur

pij = wi N(µi, i) 

wi' =  pij         µi' =  pij xj / wi'      i' =  pij xj xj
T / wi' 

j                               j                                               j
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General Form of EM Algorithm

Compute unknown distribution for data with hidden variables

x observed values of all samples
Y variables with hidden values for all samples

parameters for probabilistic model

E-step: Computation of summation
=>  Likelihood of "completed" data w.r.t. distribution p(Y = y | x, )

M-step: Maximization of expected likelihood w.r.t. parameters 

EM algorithm:   ' = argmax  p(Y = y | x, ) L(x, Y = y | )
         y

• The computed parameters increase the likelihood of data and hidden
values with each iteration

• The algorithm terminates in a local maximum
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Expectation Maximization for Estimating
Bayes Net with Hidden Variable

Expectation step of EM:

Use current (initial) probability estimates to compute probability P(a) for
all attribute combinations a (including values for hidden variables).

a* = [ * , X2=am2, X3=am3, ... ]      wa*

a1 = [X1=a1 , X2=am2, X3=am3, ... ]    wa* • P(a1)

••
•

 missing value       absolute frequency        completed database

a2 = [X1=a2 , X2=am2, X3=am3, ... ]    wa* • P(a2)

aM = [X1=aM , X2=am2, X3=am3, ... ]    wa* • P(aM)

Recommended reading: Borgelt & Kruse, Graphical Models, Wiley 2002
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Example for Expectation Maximization (1)
(adapted from Borgelt & Kruse, Graphical Models, Wiley 2002)

Given 4 binary probabilistic variables A, B, C, H with known dependency
structure:

A B C

H

Given also a database with tuples [ * A B C]  where H is a missing attribute.

H A B C w
 * T T T 14
 * T T F 11
 * T F T 20
 * T F F 20
 * F T T 5
 * F T F 5
 * F F T 11
 * F F F 14

absolute frequencies
of occurrence

Estimate of the conditional probabilities of the Bayes Net nodes !
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Example for Expectation Maximization (2)

Initial (random) probability assignments:

H P(H) A H P(A|H) B H P(B|H) C H P(C|H)

T 0.3 T T 0.4 T T 0.7 T T 0.8
F 0.7 T F 0.6 T F 0.8 T F 0.5

F T 0.6 F T 0.3 F T 0.2
F F 0.4 F F 0.2 F F 0.5

With P(H |A,B,C) =
P(A | H)•P(B |H)•P(C | H)•P(H)
P(A |H)•P(B |H)•P(C |H)•P(H)

H

one can complete the database:

H A B C w
T T T T 1.27
T T T F 3.14
T T F T 2.93
T T F F 8.14
T F T T 0.92
T F T F 2.37
T F F T 3.06
T F F F 8.49

H A B C w
F T T T 12.73
F T T F 7.86
F T F T 17.07
F T F F 11.86
F F T T 4.08
F F T F 2.63
F F F T 7.94
F F F F 5.51
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Example for Expectation Maximization (3)
Based on the modified complete database, one computes the maximum
likelihood estimates of the conditional probabilities of the Bayes Net.

Example: P(A = T |H = T)
1.27 • 3.14 • 2.93 • 8.14

1.27 • 3.14 • 2.93• 8.14 • 0,92 • 2.73 • 3.06• 8.49
0.51

This way one gets new probability assignments:

H P(H) A H P(A|H) B H P(B|H) C H P(C|H)

T 0.3 T T 0.51 T T 0.25 T T 0.27
F 0.7 T F 0.71 T F 0.39 T F 0.60

F T 0.49 F T 0.75 F T 0.73
F F 0.29 F F 0.61 F F 0.40

This completes the first iteration. After ca. 700 iterations the modifications
of the probabilities are less than 10-4. The resulting values are

H P(H) A H P(A|H) B H P(B|H) C H P(C|H)

T 0.5 T T 0.5 T T 0.2 T T 0.4
F 0.5 T F 0.8 T F 0.5 T F 0.6

F T 0.5 F T 0.8 F T 0.6
F F 0.2 F F 0.2 F F 0.4


