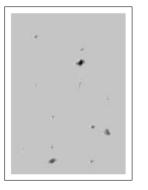
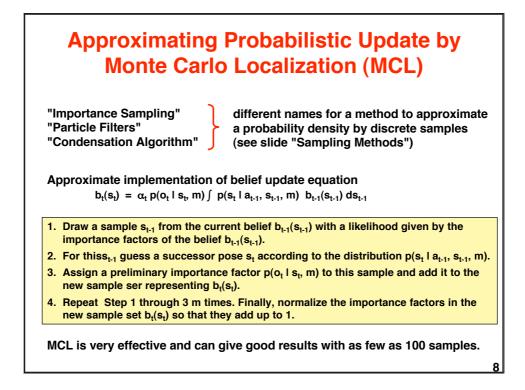
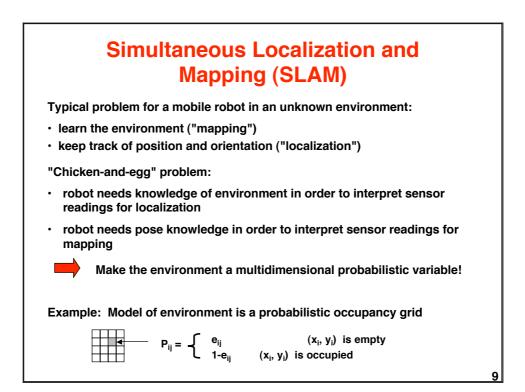


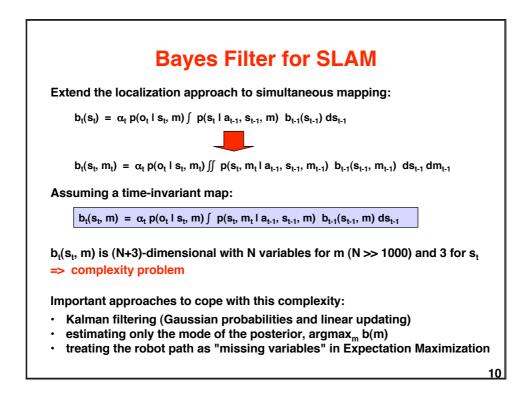
Formalization of Localization Problem model of environment (e.g. map) m pose at time t s_t observation at time t O_t action at time t \mathbf{a}_{t} $\mathbf{d}_{0...t}$ $= o_0, a_0, o_1, a_1, \dots, o_t, a_t$ observation and action data up to t <u>Task</u>: Estimate $p(s_t | d_{0...t}, m) = b_t(s_t)$ "robot's belief state at time t" Markov properties: · Current observation depends only on current pose Next pose depends only on current pose and current action • "Future is independent of past given current state" Markov assumption implies static environment! (Violation, for example, by robot actions changing the environment)

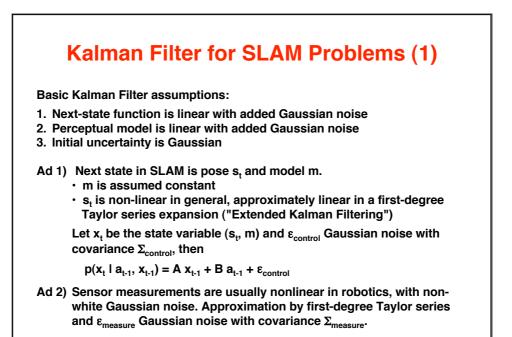

Grid-based Markov Localization (Example 2)

map and robot path

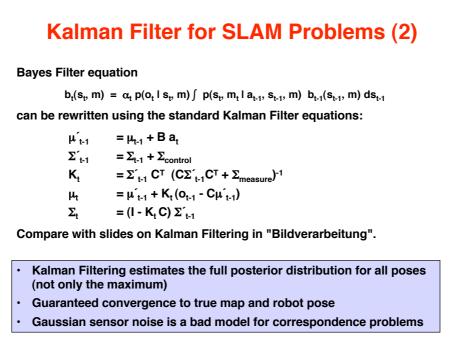


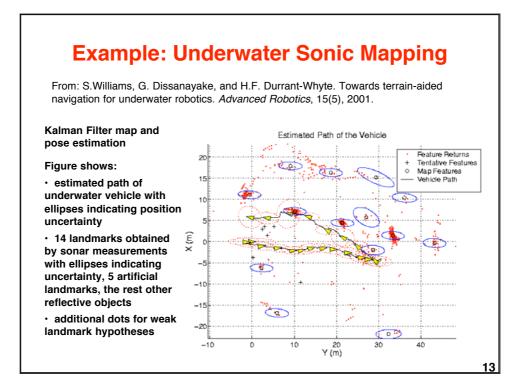

maximum position probabilities after 6 steps

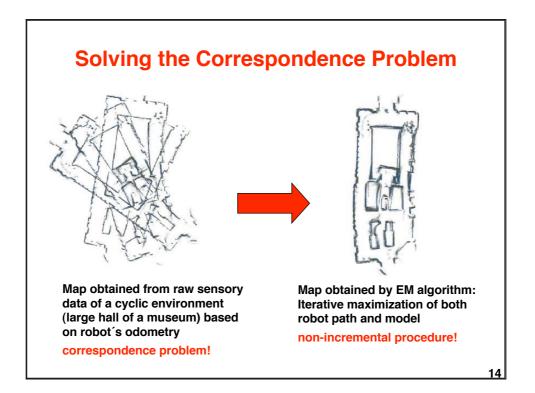


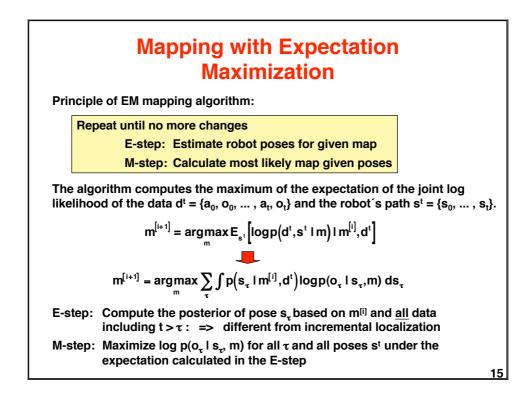

maximum position probabilities after 12 steps

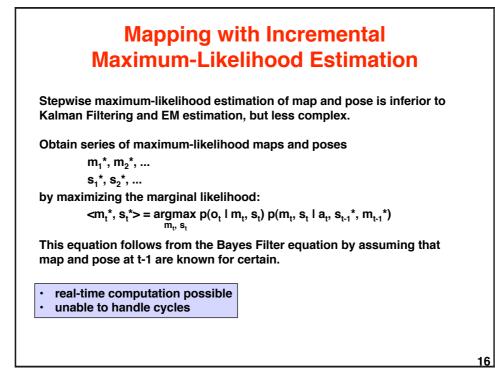
[Burgard et al. 96]

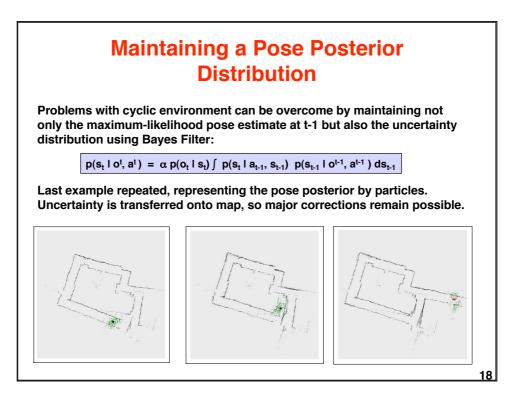







 $p(o_t | x_t) = C x_t + \varepsilon_{measure}$





Map estimates do not converge as robot completes cycle because of accumulated pose estimation error.

Examples from: Sebastian Thrun, Probabilistic Algorithms in Robotics http://www-2.cs.cmu.edu/~thrun/papers/thrun.probrob.html

17

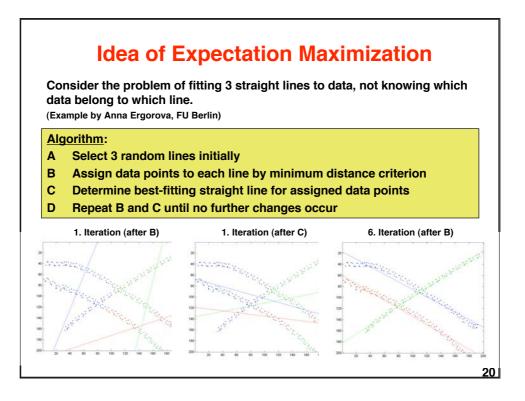
Estimating Probabilities from a Database

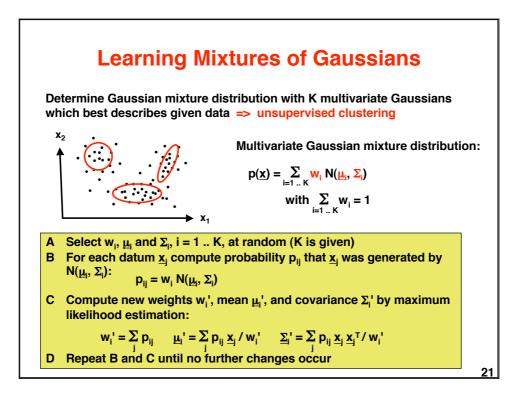
Given a sufficiently large database with tupels $\underline{a}^{(1)} \dots \underline{a}^{(N)}$ of an unknown distribution $P(\underline{X})$, we can compute maximum likelihood estimates of all partial joint probabilities and hence of all conditional probabilities.

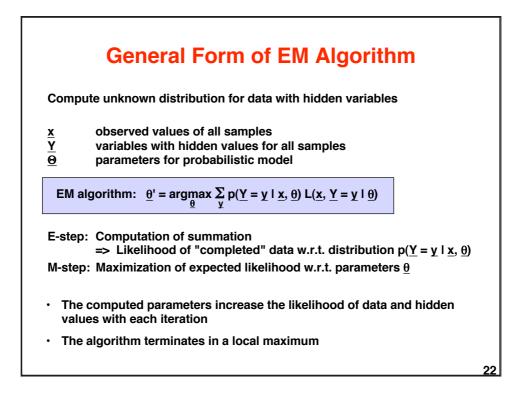
 X_{m_1}, \ldots, X_{m_K} = subset of $X_1, \ldots X_L$ with K \leq L

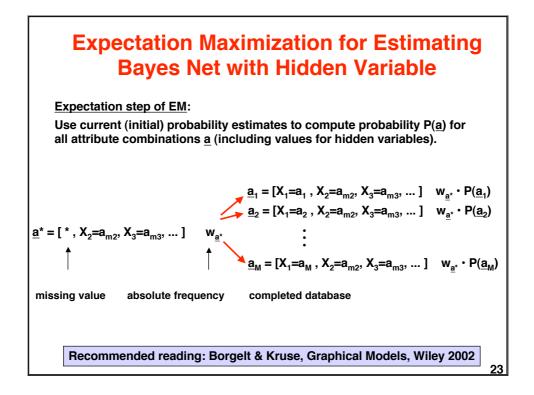
 w_a = number of tuples in database with $X_{m_1} {=} a_{m_1}, ..., X_{m_K} {=} a_{m_K}$

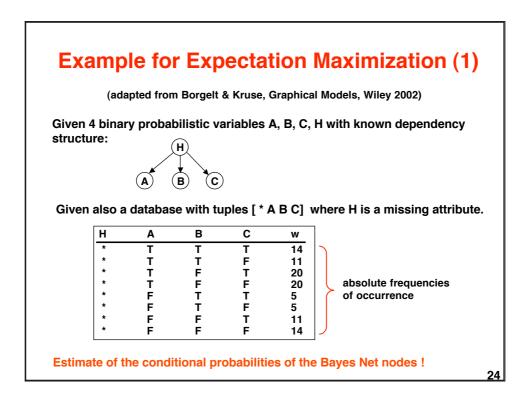
N = total number of tuples


Maximum likelihood estimate of $P(X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K})$ is $P'(X_{m_4}=a_{m_4}, ..., X_{m_K}=a_{m_K}) = w_a / N$


If a priori information is available, it may be introduced via a bias m_a :


$$P'(X_{m_1}=a_{m_1}, ..., X_{m_k}=a_{m_k}) = (w_a + m_a) / N$$


Often $m_{\underline{a}} = 1$ is chosen for all tupels \underline{a} to express equal likelihoods in the case of $\overline{a}n$ empty database.



Ex	am	ple	e fo	or	Ехр	ec	at	ion	N	laxi	m	izatio	n (2)	
Initial	(ranc	lom)	pro	babi	lity ass	ignn	nents	S:						
н	P(H)		Α	н	P(AIH)	E	вн	P(B	BIH)	С	н	P(CIH)		
т	0.3		т	Т	0.4	Т	т	0.7		т	т	0.8		
F	0.7		т	F	0.6	Т	F	0.8		т	F	0.5		
			F	Т	0.6	F	т	0.3		F	т	0.2		
			F	F	0.4	F	F	0.2		F		0.5		
one c				н	P(A H) P(A F atabase		BIH)•P(C	CIH)	• P(H)				
н	Α	в	С	w		н	Α	в	С	w				
Т	т	Т	Т	1.2	27	F	Т	Т	Т	12.73				
т	т	Т	F	3.1	4	F	т	Т	F	7.86				
т	т	F	Т	2.9			т	F	т	17.07				
Ţ	Ţ	F	F	8.1	4	F	Ţ	F	F	11.86				
Ţ	F	T	T	0.9	2	F		Ţ		4.08				
Ť	F			2.3			F	Ţ		2.63				
÷	F	F	F	3.u 8.4	-	F	F	F	T F	7.94 5.51				
•	•	•	•	0.7		•	•	•	•	5.51				2

D										
				-						the maximum Bayes Net.
				-		1.2	7 • 3.14 • 2	.93 • 8	3.14	
Exam	<u>ipie</u> : P(<i>I</i>	A = T I	H =	^{T)} ~ <u>1.27</u> ∙	3.14	• 2.9	3.14.0	.92 • :	2.73	• 3.06• 8.49 ~ 0.5
							·			
This	way one	gets I	new	probabil	ity as	ssig	nments:			
н	P(H)	Α	н	P(AIH)	в	н	P(BIH)	С	н	P(CIH)
т	0.3	т	т	0.51	т	т	0.25	т	т	0.27
F	0.7	т	F	0.71	т	F	0.25 0.39 0.75	т	F	0.60
		F	т	0.49	F	т	0.75	F	т	0.73
		F	F	0.29	F	F	0.61	F	F	0.40
Thie	complet	oe the	s fire	et itoratio	n Λf	tor	2 700 ito	ratio	ne t	he modification
	•						ne resultir			
••••••	o probai		, ai c			• • •	le reculti	.g .c		, uio
н	P(H)	Α	н	P(AIH)	В	н	P(BIH)	С	н	P(CIH)
т	0.5		т	0.5	т	т	0.2	т	т	0.4
F	0.5	т	F	0.8	т	F	0.5 0.8	т	F	0.6
		F	т	0.5	F	т	0.8	F	т	0.6
		F	F	0.5 0.2	F	F	0.8 0.2	F	F	0.6 0.4