Mobile Robot Localization

Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)?

Two sources of uncertainty:

- observations depend probabilistically on robot pose
- pose changes depend probabilistically on robot actions

Example:
Uncertainty of robot position after travelling along red path (shaded area indicates probability distribution)

Formalization of Localization Problem

m model of environment (e.g. map)
$s_{t} \quad$ pose at time t
$\mathrm{o}_{\mathrm{t}} \quad$ observation at time t
$a_{t} \quad$ action at time t
$d_{0 \ldots t} \quad=o_{0}, a_{0}, o_{1}, a_{1}, \ldots, o_{t}, a_{t}$ observation and action data up to t

Task: Estimate $p\left(s_{t} \mid d_{0 \ldots, \ldots}, m\right)=b_{t}\left(s_{t}\right)$ "robot's belief state at time $t "$

Markov properties:

- Current observation depends only on current pose
- Next pose depends only on current pose and current action
"Future is independent of past given current state"

```
Markov assumption implies static environment!
(Violation, for example, by robot actions changing the environment)
```


Structure of Probabilistic Localization

Recursive Markov Localization

```
\(b_{t}\left(s_{t}\right) \underset{=}{=} p\left(s_{t} I o_{0}, a_{0}, o_{1}, a_{1}, \ldots, a_{t-1}, o_{t}, m\right)\)
        Bayes
        \(\alpha_{t} p\left(o_{t} \mid o_{0}, a_{0}, \ldots, a_{t-1}, s_{t}, m\right) p\left(s_{t} \mid o_{0}, a_{0}, \ldots, a_{t-1}, m\right)\)
        Markov
        \(\alpha_{t} p\left(o_{t} \mid s_{t}, m\right) p\left(s_{t} \mid o_{0}, a_{0}, \ldots, a_{t-1}, m\right)\)
    \(\stackrel{\text { Total Prob. }}{=} \alpha_{t} p\left(o_{t} \mid s_{t}, m\right) \int p\left(s_{t} \mid o_{0}, a_{0}, \ldots, a_{t-1}, s_{t-1}, m\right) p\left(s_{t-1} \mid o_{0}, a_{0}, \ldots, a_{t-1}, m\right) d s_{t-1}\)
    \(\stackrel{\text { Markov }}{=} \quad \alpha_{t} p\left(o_{t} \mid s_{t}, m\right) \int p\left(s_{t} \mid a_{t-1}, s_{t-1}, m\right) p\left(s_{t-1} \mid o_{0}, a_{0}, \ldots, a_{t-1}, m\right) d s_{t-1}\)
        \(=\quad \alpha_{t} p\left(o_{t} \mid s_{t}, m\right) \int p\left(s_{t} \mid a_{t-1}, s_{t-1}, m\right) b_{t-1}\left(s_{t-1}\right) d s_{t-1}\)
```

α_{t} is normalizing factor

$$
b_{t}\left(s_{t}\right)=\alpha_{t} p\left(o_{t} \mid s_{t}, m\right) \int p\left(s_{t} \mid a_{t-1}, s_{t-1}, m\right) b_{t-1}\left(s_{t-1}\right) d s_{t-1}
$$

$p\left(o_{t} l s_{t}, m\right) \quad$ probabilistic perceptual model -
often time-invariant: p(ols, m)
$p\left(s_{t} \mid a_{t-1}, s_{t-1}, m\right) \quad$ probabilistic motion model -
often time-invariant: p(s'la,s,m)

Grid-based Markov Localization (Example 1)

robot path with 4
reference poses,
initially belief is
equally distributed

distribution of belief at second pose

distribution of belief at third pose

distribution of belief at fourth pose

Ambiguous localizations due to a repetitive and symmetric environment are sharpened and disambiguated after several observations.

Grid-based Markov Localization (Example 2)

map and robot path

maximum position probabilities after 6 steps

maximum position probabilities after 12 steps
[Burgard et al. 96]

Approximating Probabilistic Update by Monte Carlo Localization (MCL)

\(\left.\begin{array}{l}"Importance Sampling"

"Particle Filters"

"Condensation Algorithm"\end{array}\right\}\)| different names for a method to approximate |
| :--- |
| a probability density by discrete samples |
| (see slide "Sampling Methods") |

Approximate implementation of belief update equation

$$
b_{t}\left(s_{t}\right)=\alpha_{t} p\left(o_{t} \mid s_{t}, m\right) \int p\left(s_{t} \mid a_{t-1}, s_{t-1}, m\right) b_{t-1}\left(s_{t-1}\right) d s_{t-1}
$$

1. Draw a sample s_{t-1} from the current belief $b_{t-1}\left(s_{t-1}\right)$ with a likelihood given by the importance factors of the belief $b_{t-1}\left(s_{t-1}\right)$.
2. For thiss t_{t-1} guess a successor pose s_{t} according to the distribution $p\left(s_{t} I a_{t-1}, s_{t-1}, m\right)$.
3. Assign a preliminary importance factor $p\left(o_{t} \mid s_{t}, m\right)$ to this sample and add it to the new sample ser representing $b_{t}\left(s_{t}\right)$.
4. Repeat Step 1 through 3 m times. Finally, normalize the importance factors in the new sample set $b_{t}\left(s_{t}\right)$ so that they add up to 1 .

MCL is very effective and can give good results with as few as $\mathbf{1 0 0}$ samples.

Simultaneous Localization and Mapping (SLAM)

Typical problem for a mobile robot in an unknown environment:

- learn the environment ("mapping")
- keep track of position and orientation ("localization")
"Chicken-and-egg" problem:
- robot needs knowledge of environment in order to interpret sensor readings for localization
- robot needs pose knowledge in order to interpret sensor readings for mapping

Make the environment a multidimensional probabilistic variable!

Example: Model of environment is a probabilistic occupancy grid

$P_{i j}=\left\{\begin{array}{l}e_{i j} \\ 1-e_{i j}\end{array}\right.$
$\left(x_{i}, y_{i}\right)$ is empty
(x_{i}, y_{i}) is occupied

Bayes Filter for SLAM

Extend the localization approach to simultaneous mapping:

$$
\begin{aligned}
& b_{t}\left(s_{t}\right)=\alpha_{t} p\left(o_{t} \mid s_{t}, m\right) \int p\left(s_{t} \mid a_{t-1}, s_{t-1}, m\right) b_{t-1}\left(s_{t-1}\right) d s_{t-1} \\
& b_{t}\left(s_{t}, m_{t}\right)=\alpha_{t} p\left(o_{t} \mid s_{t}, m_{t}\right) \iint p\left(s_{t}, m_{t} l a_{t-1}, s_{t-1}, m_{t-1}\right) b_{t-1}\left(s_{t-1}, m_{t-1}\right) d s_{t-1} d m_{t-1}
\end{aligned}
$$

Assuming a time-invariant map:

$$
b_{t}\left(s_{t}, m\right)=\alpha_{t} p\left(o_{t} \mid s_{t}, m\right) \int p\left(s_{t}, m_{t} \mid a_{t-1}, s_{t-1}, m\right) b_{t-1}\left(s_{t-1}, m\right) d s_{t-1}
$$

$b_{t}\left(s_{t}, m\right)$ is (N+3)-dimensional with N variables for $m(N \gg 1000)$ and 3 for s_{t}
=> complexity problem
Important approaches to cope with this complexity:

- Kalman filtering (Gaussian probabilities and linear updating)
- estimating only the mode of the posterior, $\operatorname{argmax}_{\mathrm{m}} \mathbf{b}(\mathrm{m})$
- treating the robot path as "missing variables" in Expectation Maximization

Kalman Filter for SLAM Problems (1)

Basic Kalman Filter assumptions:

1. Next-state function is linear with added Gaussian noise
2. Perceptual model is linear with added Gaussian noise
3. Initial uncertainty is Gaussian

Ad 1) Next state in SLAM is pose s_{t} and model m.

- m is assumed constant
- s_{t} is non-linear in general, approximately linear in a first-degree Taylor series expansion ("Extended Kalman Filtering")
Let x_{t} be the state variable (s_{t}, m) and $\varepsilon_{\text {control }}$ Gaussian noise with covariance $\Sigma_{\text {control }}$, then

$$
p\left(x_{t} \mid a_{t-1}, x_{t-1}\right)=A x_{t-1}+B a_{t-1}+\varepsilon_{\text {control }}
$$

Ad 2) Sensor measurements are usually nonlinear in robotics, with nonwhite Gaussian noise. Approximation by first-degree Taylor series and $\varepsilon_{\text {measure }}$ Gaussian noise with covariance $\Sigma_{\text {measure }}$ -

$$
p\left(o_{t} \mid x_{t}\right)=C x_{t}+\varepsilon_{\text {measure }}
$$

Kalman Filter for SLAM Problems (2)

Bayes Filter equation

$$
b_{t}\left(s_{t}, m\right)=\alpha_{t} p\left(o_{t} \mid s_{t}, m\right) \int p\left(s_{t}, m_{t} \mid a_{t-1}, s_{t-1}, m\right) b_{t-1}\left(s_{t-1}, m\right) d s_{t-1}
$$

can be rewritten using the standard Kalman Filter equations:

$$
\begin{array}{ll}
\mu_{\mathrm{t}-1}^{\prime} & =\mu_{\mathrm{t}-1}+\mathrm{Ba}_{\mathrm{t}} \\
\Sigma_{\mathrm{t}-1}^{\prime} & =\Sigma_{\mathrm{t}-1}+\Sigma_{\text {control }} \\
\mathrm{K}_{\mathrm{t}} & =\Sigma_{\mathrm{t}-1}^{\prime} \mathrm{C}^{\top}\left(\mathrm{C}_{\mathrm{t}-1}^{\prime} \mathrm{C}^{\top}+\Sigma_{\text {measure }}\right)^{-1} \\
\mu_{\mathrm{t}} & =\mu_{\mathrm{t}-1}^{\prime}+\mathrm{K}_{\mathrm{t}}\left(\mathbf{o}_{\mathrm{t}-1}-\mathrm{C}_{\mu_{\mathrm{t}-1}^{\prime}}\right) \\
\Sigma_{\mathrm{t}} & =\left(I-\mathrm{K}_{\mathrm{t}} \mathrm{C}\right) \Sigma_{\mathrm{t}-1}^{\prime}
\end{array}
$$

Compare with slides on Kalman Filtering in "Bildverarbeitung".

- Kalman Filtering estimates the full posterior distribution for all poses (not only the maximum)
- Guaranteed convergence to true map and robot pose
- Gaussian sensor noise is a bad model for correspondence problems

Example: Underwater Sonic Mapping

From: S.Williams, G. Dissanayake, and H.F. Durrant-Whyte. Towards terrain-aided navigation for underwater robotics. Advanced Robotics, 15(5), 2001.

Kalman Filter map and pose estimation

Figure shows:

- estimated path of underwater vehicle with ellipses indicating position uncertainty
- 14 landmarks obtained by sonar measurements with ellipses indicating uncertainty, 5 artificial landmarks, the rest other reflective objects
- additional dots for weak landmark hypotheses

Solving the Correspondence Problem

Map obtained from raw sensory data of a cyclic environment (large hall of a museum) based on robot's odometry correspondence problem!

Map obtained by EM algorithm: Iterative maximization of both robot path and model
non-incremental procedure!

Mapping with Expectation Maximization

Principle of EM mapping algorithm:
Repeat until no more changes
E-step: Estimate robot poses for given map
M-step: Calculate most likely map given poses
The algorithm computes the maximum of the expectation of the joint log likelihood of the data $d^{t}=\left\{a_{0}, o_{0}, \ldots, a_{t}, o_{t}\right\}$ and the robot's path $s^{t}=\left\{s_{0}, \ldots, s_{t}\right\}$.

$$
\begin{gathered}
m^{[i+1]}=\underset{m}{\operatorname{argmax}} E_{s^{t}}\left[\log p\left(d^{t}, s^{t} \mid m\right) \mid m^{[i]}, d^{t}\right] \\
m^{[i+1]}=\underset{m}{\operatorname{argmax}} \sum_{\tau} \int p\left(s_{\tau} \mid m^{[i]}, d^{t}\right) \log p\left(o_{\tau} \mid s_{\tau}, m\right) d s_{\tau}
\end{gathered}
$$

E-step: Compute the posterior of pose s_{τ} based on $m^{[i]}$ and all data including $t>\tau$: => different from incremental localization
M-step: Maximize $\log p\left(0_{\tau} \mid s_{\tau}, m\right)$ for all τ and all poses s^{t} under the expectation calculated in the E-step

Mapping with Incremental Maximum-Likelihood Estimation

Stepwise maximum-likelihood estimation of map and pose is inferior to Kalman Filtering and EM estimation, but less complex.

Obtain series of maximum-likelihood maps and poses

$$
\begin{aligned}
& \mathrm{m}_{1}{ }^{*}, \mathrm{~m}_{2}{ }^{*}, \ldots \\
& \mathbf{s}_{1}{ }^{*}, \mathbf{s}_{2}{ }^{\prime}, \ldots
\end{aligned}
$$

by maximizing the marginal likelihood:

$$
\left.<m_{t}^{*}, s_{t}^{*}\right\rangle=\underset{m_{v}, s_{t}}{\operatorname{argmax}} p\left(o_{t} \mid m_{t}, s_{t}\right) p\left(m_{t}, s_{t} \mid a_{t}, s_{t-1}^{*}, m_{t-1}^{*}\right)
$$

This equation follows from the Bayes Filter equation by assuming that map and pose at $\mathrm{t}-1$ are known for certain.

- real-time computation possible
unable to handle cycles

Example of Incremental MaximumLikelihood Mapping

At every time step, the map is grown by finding the most likely continuation. Map estimates do not converge as robot completes cycle because of accumulated pose estimation error.

Examples from: Sebastian Thrun, Probabilistic Algorithms in Robotics http://www-2.cs.cmu.edu/~thrun/papers/thrun.probrob.html

Maintaining a Pose Posterior Distribution

Problems with cyclic environment can be overcome by maintaining not only the maximum-likelihood pose estimate at $\mathrm{t}-1$ but also the uncertainty distribution using Bayes Filter:

$$
p\left(s_{t} \mid o^{t}, a^{t}\right)=\alpha p\left(o_{t} \mid s_{t}\right) \int p\left(s_{t} \mid a_{t-1}, s_{t-1}\right) p\left(s_{t-1} \mid o^{t-1}, a^{t-1}\right) d s_{t-1}
$$

Last example repeated, representing the pose posterior by particles.
Uncertainty is transferred onto map, so major corrections remain possible.

Estimating Probabilities from a Database

Given a sufficiently large database with tupels $\underline{a}^{(1)} \ldots \underline{a}^{(N)}$ of an unknown distribution $P(X)$, we can compute maximum likelihood estimates of all partial joint probabilities and hence of all conditional probabilities.
$X_{m_{1}}, \ldots, X_{m_{K}}=$ subset of $X_{1}, \ldots X_{L}$ with $K \leq L$
$\mathrm{w}_{\mathrm{a}}=$ number of tuples in database with $\mathrm{X}_{\mathrm{m}_{1}}=\mathrm{a}_{\mathrm{m}_{1}}, \ldots, \mathrm{X}_{\mathrm{m}_{\mathrm{K}}}=\mathrm{a}_{\mathrm{m}_{\mathrm{K}}}$
$\mathrm{N}=$ total number of tuples
Maximum likelihood estimate of $P\left(X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{K}}=a_{m_{K}}\right)$ is

$$
P^{\prime}\left(X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{k}}=a_{m_{k}}\right)=w_{a} / N
$$

If a priori information is available, it may be introduced via a bias m_{a} :

$$
P^{\prime}\left(X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{K}}=a_{m_{K}}\right)=\left(w_{\underline{a}}+m_{\underline{a}}\right) / N
$$

Often $\mathrm{m}_{\mathrm{a}}=1$ is chosen for all tupels a to express equal likelihoods in the case of an empty database.

Idea of Expectation Maximization

Consider the problem of fitting 3 straight lines to data, not knowing which data belong to which line.
(Example by Anna Ergorova, FU Berlin)

Algorithm:

A Select 3 random lines initially
B Assign data points to each line by minimum distance criterion
C Determine best-fitting straight line for assigned data points
D Repeat B and C until no further changes occur

1. Iteration (after B)

2. Iteration (after C)

3. Iteration (after B)

Learning Mixtures of Gaussians

Determine Gaussian mixture distribution with K multivariate Gaussians which best describes given data $=>$ unsupervised clustering

Multivariate Gaussian mixture distribution:

$$
\begin{aligned}
p(x)= & \sum_{i=1 . . k} w_{i} N\left(\mu_{i}, \Sigma_{i}\right) \\
& \text { with } \sum_{i=1 . . k} w_{i}=1
\end{aligned}
$$

A Select w_{i}, μ_{i} and $\Sigma_{i}, i=1 . . K$, at random (K is given)
B For each datum \underline{x}_{j} compute probability $p_{i j}$ that \underline{x}_{j} was generated by $N\left(\mu_{i}, \Sigma_{i}\right)$:

$$
p_{i j}=w_{i} N\left(\mu_{i}, \Sigma_{i}\right)
$$

C Compute new weights w_{i}^{\prime}, mean μ_{i}^{\prime}, and covariance Σ_{i}^{\prime} by maximum likelihood estimation:

$$
w_{i}^{\prime}=\sum_{j} p_{i j} \quad \underline{u}_{i}^{\prime}=\sum_{j} p_{i j} x_{j} / w_{i}^{\prime} \quad \Sigma_{i}^{\prime}=\sum_{j} p_{i j} x_{j} \underline{x}_{j}^{\top} / w_{i}^{\prime}
$$

D Repeat B and C until no further changes occur

General Form of EM Algorithm

Compute unknown distribution for data with hidden variables
x observed values of all samples
$\overline{\mathbf{Y}} \quad$ variables with hidden values for all samples
$\underline{\underline{\boldsymbol{\Theta}}} \quad$ parameters for probabilistic model
EM algorithm: $\underline{\theta}^{\prime}=\underset{\theta}{\operatorname{argmax}} \sum_{y} p(\underline{Y}=\underline{y} \mid \underline{x}, \underline{\theta}) L(\underline{x}, \underline{Y}=\underline{y} \mid \underline{\theta})$

E-step: Computation of summation
\Rightarrow Likelihood of "completed" data w.r.t. distribution $p(\underline{Y}=\underline{y} \mid \underline{x}, \underline{\theta})$
M-step: Maximization of expected likelihood w.r.t. parameters $\underline{\theta}$

- The computed parameters increase the likelihood of data and hidden values with each iteration
- The algorithm terminates in a local maximum

Expectation Maximization for Estimating Bayes Net with Hidden Variable

Expectation step of EM:

Use current (initial) probability estimates to compute probability $\mathbf{P (a)}$ for all attribute combinations \underline{a} (including values for hidden variables).

Example for Expectation Maximization (1)

(adapted from Borgelt \& Kruse, Graphical Models, Wiley 2002)
Given 4 binary probabilistic variables A, B, C, H with known dependency structure:

Given also a database with tuples [* A B C] where H is a missing attribute.

Estimate of the conditional probabilities of the Bayes Net nodes!

Example for Expectation Maximization (2)

Initial (random) probability assignments:

H	$\mathbf{P}(\mathrm{H})$	A	H	$\mathbf{P}($ AIH $)$	B	H	P(BIH)	C	H	P(CIH)
T	0.3	T	T	0.4	T	T	0.7	T	T	0.8
F	0.7	T	F	0.6	T	F	0.8	T	F	0.5
		F	T	0.6	F	T	0.3	F	T	0.2
		F	F	0.4	F	F	0.2	F	F	0.5

With $\quad P(H \mid A, B, C)=\frac{P(A \mid H) \cdot P(B \mid H) \cdot P(C \mid H) \cdot P(H)}{\sum_{H} P(A \mid H) \cdot P(B \mid H) \cdot P(C \mid H) \cdot P(H)}$
one can complete the database:

H	A	B	C	w
T	T	T	T	1.27
T	T	T	F	3.14
T	T	F	T	2.93
T	T	F	F	8.14
T	F	T	T	0.92
T	F	T	F	2.37
T	F	F	T	3.06
T	F	F	F	8.49

H	A	B	C	w
F	T	T	T	12.73
F	T	T	F	7.86
F	T	F	T	17.07
F	T	F	F	11.86
F	F	T	T	4.08
F	F	T	F	2.63
F	F	F	T	7.94
F	F	F	5.51	

Example for Expectation Maximization (3)

Based on the modified complete database, one computes the maximum likelihood estimates of the conditional probabilities of the Bayes Net.
Example: $\mathrm{P}(\mathrm{A}=\mathrm{T} I \mathrm{H}=\mathrm{T}) \approx \frac{1.27 \cdot 3.14 \cdot 2.93 \cdot 8.14}{1.27 \cdot 3.14 \cdot 2.93 \cdot 8.14 \cdot 0,92 \cdot 2.73 \cdot 3.06 \cdot 8.49} \approx 0.51$
This way one gets new probability assignments:

H	P(H)	A	H	P(AIH)	B	H	P(BIH)	C	H	P(CIH)
T	0.3	T	T	0.51	T	T	0.25	T	T	0.27
F	0.7	T	F	0.71	T	F	0.39	T	F	0.60
		F	T	0.49	F	T	0.75	F	T	0.73
		F	F	0.29	F	F	0.61	F	F	0.40

This completes the first iteration. After ca. 700 iterations the modifications of the probabilities are less than 10^{-4}. The resulting values are

H	P(H)	A	H	P(AIH)	B	H	P(BIH)	C	H	P(CIH)
T	0.5	T	T	0.5	T	T	0.2	T	T	0.4
F	0.5	T	F	0.8	T	F	0.5	T	F	0.6
		F	T	0.5	F	T	0.8	F	T	0.6
		F	F	0.2	F	F	0.2	F	F	0.4

