Description Logics

Description Logics for
Knowledge Representation

DLs are a family of knowledge-representation formalisms

.

.

.

object-centered, roles and features (binary relations)

necessary vs. sufficient attributes

inference services

subsumption check
consistency check
classification

abstraction

default reasoning

spatial and temporal reasoning

guaranteed correctness, completeness, decidability and
complexity properties

highly optimized implementations (e.g. RACER)

Development of Description Logics

There exist several commercial and experimental developments of DLs,
among them

.

.

.

.

.

KL-ONE first conception of a DL (1985)
CLASSIC commercial implementation by AT&T

LOOM experimental system at USC
FaCT experimental and commercial system (Horrocks, Manchester)
RACER experimental system in Hamburg and Montreal

(Haarslev & Moeller)

There is active research on DLs:

.

.

.

.

extending the expressivity of concept languages

decidability and tractability of inference services

integration of predicates over concrete domains (e.g. numbers)
highly optimized implementations

developing new inference services (e.g. for scene interpretation)

Family of Description Logics

AL
Attribute Language VN

ALC ALNFIh (CLASSIC)
Complement Number restrictions (=nr) (=nr)
Features with same-as, Inverse
ALCNF (KR/S) hierarchies with single inheritance

Number restrictions (=nr) (=nr)
Features with same-as

ALCQRIFO (LOOM) ALC(D)
Qualified number restrictions (znr C)(snr C) concrete Domains D, P
Role conjunction, Inverse roles h. N
Features with same-as, One-of, fills ALCRP(D)
- N .
ALCHfR+ (= CT) Roles defined wrt Predicates
role Hierarchies with multiple parents u
features without same-as [|
transitive Roles
= | |
ALCNHR+ (RACE) ALCQHIR+ (RACER)
role Hierarchies with multiple parents role Hierarchies with multiple parents
Number restrictions (znr)(snr) Qualified number restrictions (znr C) (snr C)
transitive Roles Inverse roles, transitive Roles, integers and reals

RACER Concept Language

C concept term concept definition concrete-domain concepts

gN colnctept name (equivalent CN C) AN attribute name
role term cDC > (a AN)

il RO ENE concept axioms (an AN)

- (implies CN C) (nq AN))

¢~ ?t:,"p* (implies C1 C2) (min AN integer)
bottom (equivalent C1 C2) (max AN integer)
(not C) (disjoint C1 ... Cn) (> aexpr aexpr)
(and C1...Cn) (>= aexpr aexpr)
(or C1...Cn) roles (< aexpr aexpr)
(some .I;C) R -> RN (<= aexpr aexpr)
(@il R 0 (inv AN) = s ST
(at-least n R) aexpr -> AN
(at-most n R) real
(exactly n R) (+ aexpr1 aexpr1*)
(at-least n R C) aexpri
(at-most n R C) aexpr1 -> real
(exactly n R C) AN
cDC (* real AN)

Primitive and Defined Concepts

Concept expressions of a DL describe sets of entities within terms of
properties (unary relations) and the roles (binary relations).

The main building blocks are primitive oder defined concepts.
Primitive concepts: concept => satisfied properties and relations

satisfied properties and relations are necessary conditions

for an object to belong to a class
Defined concepts: = concept <=> satisfied properties and relations

satisfied properties and relations are necessary and sufficient
conditions for an object to belong to a classt

Primitive concept "person":
(implies person (and human (some has-gender (or female male))))

Defined concept "parent":
(equivalent parent (and person (some has-child person)))

Example of a TBox

(signature :atomic-concepts (person human female male woman man parent
mother father grandmother aunt uncle sister brother)
rroles ((has-child :parent has-descendant)

(has-descendant :transitive t)

(has-sibling) .

(has-sister :parent has-sibling) S'gnature of TBox

(has-brother :parent has-sibling)

(has-gender :feature t)))
(implies *top* (all has-child person))
(implies (some has-child *top*) parent) .
(implies (some has-sibling *top*) (or brother sister)) dom?m_ and Sl
(implies *top* (all has-sibling (or sister brother))) restrictions for
(implies *top* (all has-sister (some has-gender female))) roles
(implies *top* (all has-brother (some has-gender male)))

(implies person (and human (some has-gender (or female male))))

(disjoint female male)

(implies woman (and person (some has-gender female)))

(implies man (and person (some has-gender male)))

(equivalent parent (and person (some has-child person)))

(equivalent mother (and woman parent)) concepts
(equivalent father (and man parent))

(equivalent grandmother (and mother (some has-child (some has-child person))))
(equivalent aunt (and woman (some has-sibling parent)))

(equivalent uncle (and man (some has-sibling parent)))

(equivalent brother (and man (some has-sibling person)))

(equivalent sister (and woman (some has-sibling person)))

Concept and Role Hierachies
Implied by TBox

m | has-gender! || has-sibling || has-descendant*
person | has-sister | | has-brother | | has-child |
| man | | parent | |woman |

r universal role

| brother | | father | | mother | | sister | .

! attribute (feature)
transitive role

| male

| uncle | | grandmother | | aunt | | female |

bottom

TBox Inferences

A DL system offers several inference services. At the core is a
consistency test:

?
C E *bottom* (the empty concept)

Example: (and (at-least 1 has-child) (at-most 0 has-child)) = *bottom*

Consistency checking is the basis for several other inference services:

. subsumption
(implies C1 C2) <=> (and C1 (not C2)) k& *bottom*
. classification of a concept expression

searches the existing concept hierarchy for the most special concept
which subsumes the concept expression

ABox of a Description Logic System

TBox = terminological knowledge (concepts and roles)
ABox = assertional knowledge (facts)

An ABox contains:
- concept assertions (instance IN C)
individual IN is instance of a concept expression C

- role assertions (related IN; IN, RN)
individual IN, is related to IN, by role RN

+ An ABox always refers to a particular TBox.
+ An ABox requires unique names
+ ABox facts are assumed to be incomplete (OWA).

OWA = Open World Assumption

(new facts may be added, hence inferences are restricted)
CWA = Closed World Assumption

(no facts may be added)

10

ABox Inferences

ABox inferences = inferring facts about ABox individuals

Typical queries:

. consistency
. retrieval
. classification

is ABox consistent?
which individuals satisfy a concept expression?
what are the most special concept names which

describe an individual?

ABox consistency checking is in general more complicated than TBox

consistency checking

ABox consistent <=> there exists a "model" for ABox and TBox

All ABox inferences are based on the ABox consistency check.

11

Example of ABox Queries

Contents of ABox

(instance alice mother)
(related alice betty has-child)
(related alice charles has-child)

(instance betty mother)
(related betty doris has-child)
(related betty eve has-child)

(instance charles brother)

(related charles betty has-sibling)
(instance charles (at-most 1 has-sibling))
(related doris eve has-sister)

(related eve doris has-sister)

Questions and answers
(individual-instance? doris woman)

T

(individual-types eve)

((sister) (woman) (person) (human) (*top*))

(individual-fillers alice has-descendant)
(doris eve charles betty)

(concept-instances sister)
(doris betty eve)

doris
has-
chil

betty: mother has-
has-

sister
/ has’
child

child
eve

alice: mother@
has-

has- sibling

child

charles: (and brother (at-most 1 has-sibling))

Is doris instance of the concept woman ?
Of which concept names is eve an instance?
What are the descendants of eve ?

Which instances has the concept sister ?

12

Abstraction with Description Logics

Abstraction = omission of properties or relations, extending a concept,

generalization

Examples:

.

Superordinate concept name of a concept expression
(= concept classification)

(and person (some has-size tall)) - person

Generalization of concept expressions
(and (some has-occupation professor) (at-least 3 has-child))
(and (some has-occupation civil-servant) (at-least 1 has-child))
Concept expression which subsumes several individuals
1. classify individuals
2. determine least common subsumer (LCS)

- for RACER: trivial solution in terms of (ORC, ...C)

- for DLs without OR: special abstraction operator LCS

13

