
1

1

Description Logics

2

Description Logics for
Knowledge Representation

DLs are a family of knowledge-representation formalisms

• object-centered, roles and features (binary relations)

• necessary vs. sufficient attributes

• inference services
– subsumption check
– consistency check
– classification
– abstraction
– default reasoning
– spatial and temporal reasoning

• guaranteed correctness, completeness, decidability and
complexity properties

• highly optimized implementations (e.g. RACER)

2

3

Development of Description Logics

There exist several commercial and experimental developments of DLs,
among them
• KL-ONE first conception of a DL (1985)
• CLASSIC commercial implementation by AT&T

• LOOM experimental system at USC
• FaCT experimental and commercial system (Horrocks, Manchester)
• RACER experimental system in Hamburg and Montreal

(Haarslev & Moeller)

There is active research on DLs:
• extending the expressivity of concept languages
• decidability and tractability of inference services
• integration of predicates over concrete domains (e.g. numbers)
• highly optimized implementations
• developing new inference services (e.g. for scene interpretation)

4

Family of Description Logics
AL
Attribute Language

ALC
Complement

ALC(D)
concrete Domains D, P

ALCRP(D)
Roles defined wrt Predicates

ALCNF (KRIS)
Number restrictions (n r) (n r)
Features with same-as

ALCQRIFO (LOOM)
Qualified number restrictions (n r C)(n r C)
Role conjunction, Inverse roles
Features with same-as, One-of, fills

ALCHfR+ (FaCT)
role Hierarchies with multiple parents
features without same-as
transitive Roles

ALNFIh (CLASSIC)
Number restrictions (n r) (n r)
Features with same-as, Inverse
hierarchies with single inheritance

ALCNHR+ (RACE)
role Hierarchies with multiple parents
Number restrictions (n r) (n r)
transitive Roles

ALCQHIR+ (RACER)
role Hierarchies with multiple parents
 Qualified number restrictions (n r C) (n r C)
Inverse roles, transitive Roles, integers and reals

3

5

RACER Concept Language

C concept term
CN concept name
R role term
RN role name

C -> CN
top
bottom
(not C)
(and C1 ... Cn)
(or C1 ... Cn)
(some R C)
(all R C)
(at-least n R)
(at-most n R)
(exactly n R)
(at-least n R C)
(at-most n R C)
(exactly n R C)
CDC

concept definition

(equivalent CN C)

concept axioms

(implies CN C)
(implies C1 C2)
(equivalent C1 C2)
(disjoint C1 ... Cn)

roles

R -> RN
(inv RN)

concrete-domain concepts
AN attribute name

CDC -> (a AN)
(an AN)
(no AN)
(min AN integer)
(max AN integer)
(> aexpr aexpr)
(>= aexpr aexpr)
(< aexpr aexpr)
(<= aexpr aexpr)
(= aexpr aexpr)

aexpr -> AN
real
(+ aexpr1 aexpr1*)
aexpr1

aexpr1 -> real
AN
(* real AN)

6

Primitive and Defined Concepts

Concept expressions of a DL describe sets of entities within terms of
properties (unary relations) and the roles (binary relations).

The main building blocks are primitive oder defined concepts.

Primitive concepts: concept => satisfied properties and relations

satisfied properties and relations are necessary conditions
for an object to belong to a class

Defined concepts: concept <=> satisfied properties and relations

satisfied properties and relations are necessary and sufficient
conditions for an object to belong to a classt

Primitive concept "person":
(implies person (and human (some has-gender (or female male))))

Defined concept "parent":
(equivalent parent (and person (some has-child person)))

4

7

Example of a TBox
(signature :atomic-concepts (person human female male woman man parent

mother father grandmother aunt uncle sister brother)
:roles ((has-child :parent has-descendant)

(has-descendant :transitive t)
(has-sibling)
(has-sister :parent has-sibling)
(has-brother :parent has-sibling)
(has-gender :feature t)))

(implies *top* (all has-child person))
(implies (some has-child *top*) parent)
(implies (some has-sibling *top*) (or brother sister))
(implies *top* (all has-sibling (or sister brother)))
(implies *top* (all has-sister (some has-gender female)))
(implies *top* (all has-brother (some has-gender male)))

(implies person (and human (some has-gender (or female male))))
(disjoint female male)
(implies woman (and person (some has-gender female)))
(implies man (and person (some has-gender male)))
(equivalent parent (and person (some has-child person)))
(equivalent mother (and woman parent))
(equivalent father (and man parent))
(equivalent grandmother (and mother (some has-child (some has-child person))))
(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))
(equivalent brother (and man (some has-sibling person)))
(equivalent sister (and woman (some has-sibling person)))

Signature of TBox

domain and range
restrictions for
roles

concepts

8

Concept and Role Hierachies
Implied by TBox

top

human

person

parent

mother

grandmother

bottom

man woman

brother father sister

auntuncle female

r

has-gender! has-sibling has-descendant*

has-brotherhas-sister has-child

r universal role
! attribute (feature)
* transitive role

male

5

9

TBox Inferences

A DL system offers several inference services. At the core is a
consistency test:

?
C *bottom* (the empty concept)

Example: (and (at-least 1 has-child) (at-most 0 has-child)) *bottom*

Consistency checking is the basis for several other inference services:

• subsumption
(implies C1 C2) <=> (and C1 (not C2)) *bottom*

• classification of a concept expression
searches the existing concept hierarchy for the most special concept
which subsumes the concept expression

10

ABox of a Description Logic System

TBox = terminological knowledge (concepts and roles)
ABox = assertional knowledge (facts)

An ABox contains:

- concept assertions (instance IN C)
individual IN is instance of a concept expression C

- role assertions (related IN1 IN2 RN)
individual IN1 is related to IN2 by role RN

• An ABox always refers to a particular TBox.
• An ABox requires unique names
• ABox facts are assumed to be incomplete (OWA).

OWA = Open World Assumption
(new facts may be added, hence inferences are restricted)

CWA = Closed World Assumption
(no facts may be added)

6

11

ABox Inferences

ABox inferences = inferring facts about ABox individuals

Typical queries:

• consistency is ABox consistent?

• retrieval which individuals satisfy a concept expression?

• classification what are the most special concept names which
describe an individual?

ABox consistency checking is in general more complicated than TBox
consistency checking

ABox consistent <=> there exists a "model" for ABox and TBox

All ABox inferences are based on the ABox consistency check.

12

Contents of ABox
(instance alice mother)
(related alice betty has-child)
(related alice charles has-child)

(instance betty mother)
(related betty doris has-child)
(related betty eve has-child)

(instance charles brother)
(related charles betty has-sibling)
(instance charles (at-most 1 has-sibling))
(related doris eve has-sister)
(related eve doris has-sister)

doris

betty: mother

alice: mother eve

charles: (and brother (at-most 1 has-sibling))

has-
child

has-
child

has-
sister

has-
child

has-
child

has-
sibling

Questions and answers
(individual-instance? doris woman) Is doris instance of the concept woman?
T

(individual-types eve) Of which concept names is eve an instance?
((sister) (woman) (person) (human) (*top*))

(individual-fillers alice has-descendant) What are the descendants of eve?
(doris eve charles betty)

(concept-instances sister) Which instances has the concept sister?
(doris betty eve)

Example of ABox Queries

7

13

Abstraction with Description Logics

Abstraction = omission of properties or relations, extending a concept,
generalization

Examples:

• Superordinate concept name of a concept expression
(= concept classification)
(and person (some has-size tall)) person

• Generalization of concept expressions
(and (some has-occupation professor) (at-least 3 has-child))

(and (some has-occupation civil-servant) (at-least 1 has-child))

• Concept expression which subsumes several individuals
1. classify individuals
2. determine least common subsumer (LCS)

- for RACER: trivial solution in terms of (OR C1 ... Cn)
- for DLs without OR: special abstraction operator LCS

