<section-header><section-header><section-header><text><text><text><text>

Website

The website for this course can be reached via

http://kogs-www.informatik.uni-hamburg.de/~neumann/KBSI-WS-2006/

You will find PDF copies of the slides and possibly other useful information related to the course.

The website will be updated each week on Monday.

_ecture 1:	Introduction Contents overview, motivation, aims, problem areas
ecture 2:	Early work on scene interpretation Badler, Tsotsos, Hogg, Nagel, Neumann
ecture 3:	Basic knowledge representation formalisms Semantic Networks, Frames, Constraints, Relational Structures
ecture 4:	Conceptual units for scene interpretation Aggregates, situation trees, scenarios
ecture 5:	Interface to low-level vision Primitive symbols, grounding
Lecture 6:	Modelling spatial and temporal relations Fuzzy predicates, Allen, RCC8, constraints
ecture 7:	Interpretation procedures

3

_ecture 8:	Logical framework Model construction, Decription Logics
Lecture 9:	Scene interpretation as configuration Stepwise construction, SCENIC
Lecture 10:	Probabilistic Guidance Hierarchical Bayesian Networks
Lecture 11:	Task orientation Focus of attention, seeing and acting
Lecture 12:	Case study Real-time scenario recognition (Orion/INRIA)
Lecture 13:	Application development Criminal act recognition (Orion/INRIA)
Lecture 14:	Summary and outlook

What is Computer Vision?				
Computer Vision is t reconstruction and i	he academic discipline dealing with task-oriented nterpretation of a scene by means of images.			
scene:	section of the real world stationary (3D) or moving (4D)			
image:	view of a scene projection, density image (2D) depth image (2 1/2D) image sequence (3D)			
reconstruction and interpretation:	computer-internal scene description quantitative + qualitative + symbolic			
task-oriented:	for a purpose, to fulfill a particular task context-dependent, supporting actions of an agent			

What Is Scene Interpretation?

Scene Interpretation is the task of "understanding" or interpreting a scene beyond single-object recognition. Typical examples are traffic scene interpretation for driver assistance, inferring user intentions in smart-room scenarios, recognizing team behavior in robocup games, discovering criminal acts in monitoring tasks.

Characteristics:

- Interpretations involve several objects and occurrences.
- Interpretations depend on temporal and spatial relations between parts of a scene
- Interpretations describe the scene in qualitative terms, omitting geometric details.
- Interpretations include inferred facts, unobservable in the scene.
- Interpretations are based on conceptual knowledge and experience about the world.

"Scene interpretation" means roughly the same as "high-level vision".

interpretation understanding every-day occurrences

Garbage collection in Hamburg (1 frame of a sequence) We want to recognize parts, activities, intentions, spatial & temporal relations

Examples for Scene Interpretation (2)

Scene interpretation is silent movie understanding

Buster Keaton in "The Navigator" We want to recognize episodes, the "story", emotions, funnyness

Some Application Scenarios for Scene Interpretation

- Street traffic observations (long history)
- Cameras monitoring parking lots, railway platforms, supermarkets, nuclear power plants, ...
- Video archiving and retrieval
- Automatic soccer commentator
- Smart room cameras
- Autonomous robot applications

 (e.g. robot watchmen, playmate for children, assistance for elderly)

Technological Challenges of Scene Interpretation Tasks

- Problem area combines Computer Vision (CV) and Artificial Intelligence (AI), not well attended by CV and AI research
- Interpretations may build on common sense knowledge, common-sense knowledge representation is an unsolved issue
- Application scenarios may be large and highly diverse, knowledge engineering is a challenge
- · Visual learning and adaptation may be required
- Reliability and complexity management may become important issues
- Economical application development requires generic approach

Uncertainty Problems (4)			
Cultural clash betweeen logical and probabi	listic reasoning		
Probabilistic methods are nor yet seam logical calculi	lessly integrated with		
Interesting recent developments:			
First-order probabilistic inference (Po	ole 03)		
Probabilistic relational models (http://	//dags.stanford.edu/PRMs/)		
Example for reasoning in image interp (from Kanade´s invited lecture at IJCAI-03: "Computer Vision: AI or Non-AI Problem?")	retation:		
car on left side of street (uncertain orientation of car)	orientation of car resolved		
japanese signs => left-hand traffic	: J		

