Video-Based Event Detection

Ph.D. research of Somboon Hongeng at the University of Southern California (2003)

Slides adapted from a talk of S. Hongeng at Hamburg University in October 2003

1

Goals and Motivation

- Retrieves semantic information from video
 - Determines if it contains any interesting events
 - When and Where? (i.e., spatial and temporal dimensions)
- Applications include Video Surveillance, Video Summarization, Human-Machine Interaction, Intelligent Living Spaces

Monitoring of Vehicle Behaviors

"go through checkpoint"

Checkpoint is the area between the two tanks

3

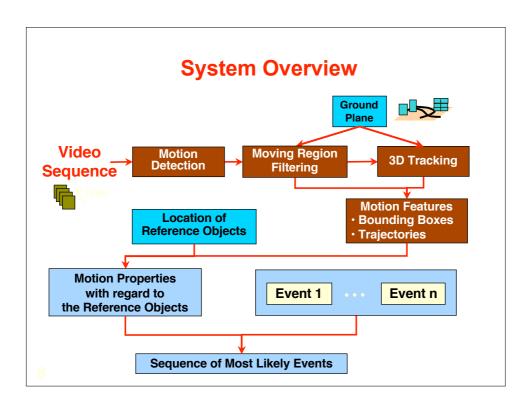
Monitoring of Activities in a Crowd

- Multiple actors and objects
- Interaction among individual actions

"theft at phone-booth (PB)"

Challenges of Event Detection

- Generic event representation
- Effective and robust event recognition
 - Bridges the gap between pixel values and symbolic event description
 - Computation of uncertainties
 - imperfect tracking of "objects" in noisy videos
 - similar activities must be distinguished
 - Variation in execution styles, temporal durations
 - Generic object recognition
 - Use and acquisition of scene and task context
 - ...


5

Prior State of the Art

- Action Recognition using Bayesian networks
 - Remagnino et al. (1998), Buxton & Gong (1995)
 - Only handles static or simple events
- Action Recognition using HMMs
 - Ohya (1992), Starner (1998), Oliver et al. (2000)
 - Parameter space becomes too large in complex events
- Syntactic Pattern Recognition of Actions
 - Pinhanez (1998), Ivanov & Bobick (2000)
 - Action units are assumed to be detected and segmented reliably

Large-Scale Event Detection System

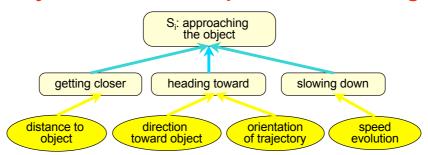
- Videos taken by a single, calibrated camera
- Moving objects are observed from a distance
 - Closely coordinated movements of body parts cannot be observed reliably
 - Blob shapes and trajectories are main sources of info
- Scene and task contexts are given
 - Interesting events to be detected are known and can be modeled a priori
 - Locations and types of scene objects are known

Motion Detection & Tracking

- Statistical background modeling
 - Pixel-wise mode computation
- Detects moving regions by background subtraction
- Tracks objects by making correspondence between moving regions at different times
 - Moving regions may split due to low contrast, noise
 - Uses distance on ground plane to select blob correspondence across timeframes
 - Filters split regions based on color distribution consistency

9

Tracking "Theft at PhoneBooth"

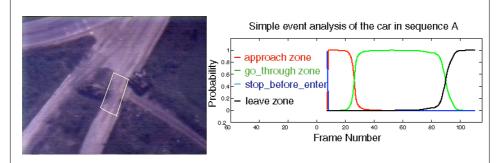

- Ground tracks are noisy in low camera angle
 - Few pixels mistake projects to several meters

Event Classification

- Single Thread Events
 - Simple Event
 - Short, coherent unit of movement (e.g., "going toward")
 - Static poses (e.g., "stand", "crouch")
 - Composite Events
 - Linearly ordered continuous sequence of events
 - Long-term (normally longer than 30 frames)
- Multiple Thread Events
 - Temporal and logical combination of two or more single thread events

11

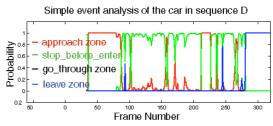
Object Class and Simple Event Modeling


- Object classes and simple events are modeled by a Bayesian Network of sub-events or properties of shape and trajectory of the actor
- Recognized by computing P(S_{i,}| O_t) at each time frame

Inferring P(S_i|O_t)

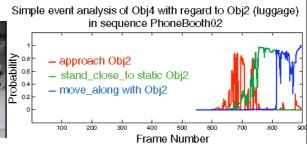
- Compute "evidence": O_t
 - Properties related to object trajectories
 - Properties related to bounding boxes
- Compute P(S_i|O_t) from O_t using Bayes' rule
 - Assume conditional probabilities are Gaussian
 - Estimate Gaussian parameters from 600 frames of event samples
 - Normalize P(S_i|O_t) based on all alternative events (S_i, S_k, etc...)

13


Simple Event Analysis of "Checkpoint A"

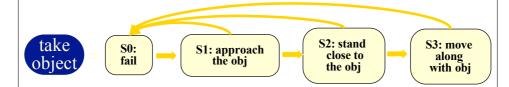
- Evolution of the output of Bayesian networks P(S_i|O_t) of four simple events
- The "zone" is shown by the quadrangle

Simple Event Analysis of "Checkpoint D"



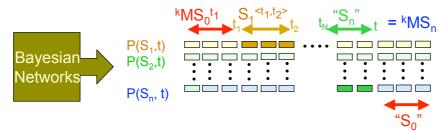
Evolution of the output of Bayesian networks P(S_i|O_t) of four simple events

15


Simple Events of "Take Object"

1 Lettonebaoth

Output of Bayesian networks P(S_i|O_t) of three sub-events of "take object"


Composite Event Modeling

- Finite state automaton is used to represent long-term composite events
- Dynamics of composite event are modeled by the transitions from one event state to another
 - Durations of event states can vary
 - Given the Bayesian probabilities of each event state computed for a period of time, a sequence of event states must be segmented appropriately

17

Recognition of Composite Event k

- Let S₀,...,S_n be states of composite event ^kMS; O=(O₁,...,O_t) be the observations; ^kMS_i be the fact that S_i is the current state of ^kMS
- kMS_n is recognized at frame t by computing

$$P({}^{k}MS_{n}{}^{t}|O) = \alpha_{0} \sum_{P} P(O|{}^{k}MS_{0}{}^{t_{1}} S_{1}{}^{< t_{1},t_{2}>} ... S_{n}{}^{< t_{n},t>}) P({}^{k}MS_{n}{}^{t})$$

$$V(t_{1},...,t_{n})$$

Note: we drop k in the next slides for clarity

Factoring $P(O|MS_n^t)$ and $P(MS_n^t)$

- Under semi-HMM assumption that
 - $O^{< t_m, t_{m+1}>}$ is independent of $S_n^{< t_n, t_{n+1}>}$ given $S_m^{< t_m, t_{m+1}>}$
 - probability of S_m making a transition to S_n depends on the *duration* of S_m ,

we have:

$$\begin{split} P(\mathsf{MS}_n{}^t|\mathsf{O}) &= \alpha_0 \sum_{I' \ (t_1, \dots, \ t_n)} P(\mathsf{MS}_0{}^{t_1}) \ P \ (\mathsf{O}^{<1, t_1>}| \ \mathsf{MS}_0{}^{t_1}) \\ &a_{1,0} \ P(\mathsf{d}_{s_1} = t_2 - t_1) \ P(\mathsf{O}^{< t_1, t_2>}|S_1{}^{< t_1, t_2>}) \ \dots \\ &a_{n, n-1} \ P(\mathsf{d}_{s_n} = t - t_n) \ P(\mathsf{O}^{< t_n, t>}| \ S_n{}^{< t_n, t>}) \end{split}$$

- $a_{n,m}$: the probability of the path from S_m to S_n
- $P(d_{s_m})$: the distribution of event duration of S_m ,
 - estimated using direct method, assuming a Gaussian
 - · uniform distributions for highly variable event durations

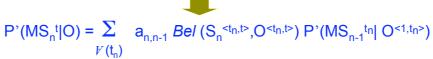
10

Computing $P(MS_n^t|O)$

Assuming that O^t and S_n^t are independent given S_n^t ,
 P(O^{<t_m,t_n>}|S_m<t_m,t_n></sup>) can be computed from Bayesian probabilities as:

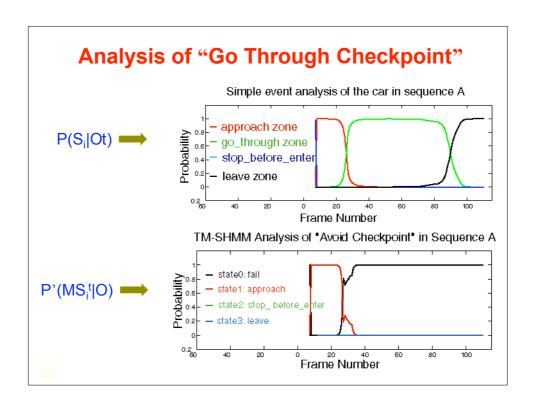
$$\begin{split} &P(O^{< t_m,t_n>}|S_m^{< t_m,t_n>}) = \beta_{< t_m,t_n>} & \underset{t_m <= \ t <= \ t_n}{\Pi} P(S_m^t|(O^t)) \\ &\beta_{< t_m,t_n>} = & \underset{t_m <= \ t <= \ t_n}{\Pi} \underbrace{P(O^t)}_{P(S_m^t)} & \text{is a normalizing constant} \end{split}$$

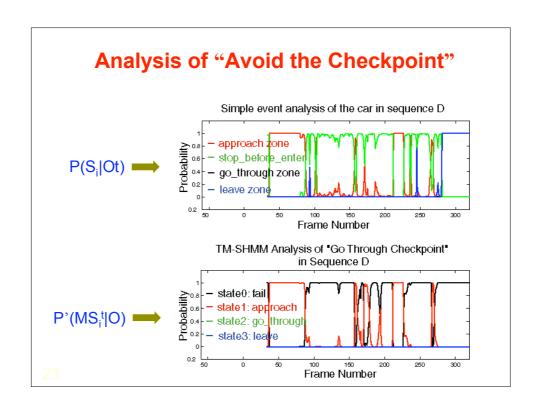
 $\begin{array}{ll} \blacksquare \quad \text{Let} \quad P'(\mathsf{MS_N^t|O}) & \text{be the normalized P(MS_N^t|O);} \\ \quad \textit{Bel } (S_i^{< t_i, t_{i+1}>}, O^{< t_i, t_{i+1}>}) & \text{be } \quad P(d_{s_i} = t_{i+1} - t_i) \prod\limits_{t_i <= t} P(S_i^{t_i}(O^t); \\ \quad t_i <= t_{i+1} \end{array}$

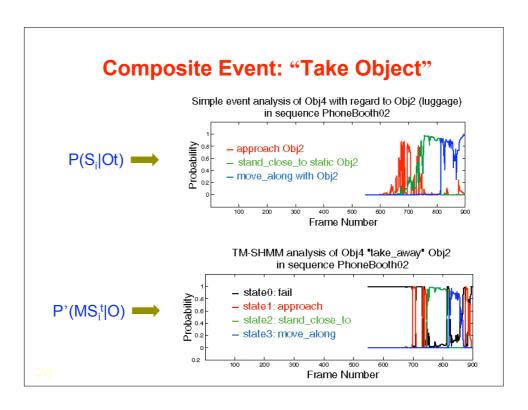

We have:

$$P^{\text{!`}}(MS_{N}^{t}|O) = \sum_{\textit{I'}} P^{\text{!`}}(MS_{0}^{t_{1}}|O^{<1,t_{1}>}) \prod_{1 <= i <= n} a_{i,i-1} \textit{ Bel } (S_{i}^{< t_{i},t_{i+1}>},O^{< t_{i},t_{i+1}>})$$

Computing P'(MS_nt|O) Efficiently


- Direct computation of P'(MS_nt|O) is O(nTn)
- Efficient recursive algorithm based on Dynamic Programming can achieve O(nT)


$$P'(MS_n^{\ t}|O) = \sum_{i=1}^n P'(MS_0^{\ t_1}|O^{<1,t_1>}) \prod_{i=1}^n a_{i,i-1} \ Bel \ (S_i^{< t_i,t_{i+1}>},O^{< t_i,t_{i+1}>})$$

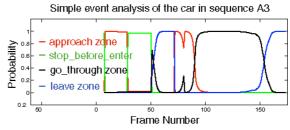


 $V(\mathsf{t_n})$

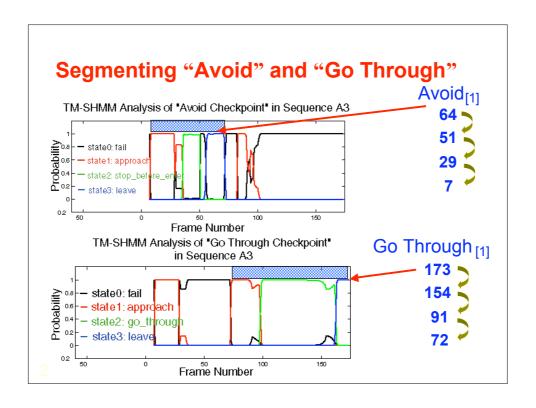
At frame t, for all S_i , update $\textit{Bel}\left(S_i^{< t_i, t_i>}, O^{< t_i, t_i>}\right)$ with Bayesian probability $P(S_i^t||O^t)$; multiply it with $P'(MS_{i-1}^t||O^{<1}, t_i>)$ that is already computed

Segmenting Composite Events

- Set a probabilistic threshold to detect ending times (kte,...,ktep) of event instances 1,...,p of kMSn
- At time frame t, compute P(MS*_nt|O):


$$P(MS_{n}^{*}|O) = \alpha_{0} \max_{V(t_{1},...,t_{n})} P(O|MS_{0}^{t_{1}} S_{1}^{< t_{1},t_{2}>} ... S_{n}^{< t_{n},t_{2}>}) P(MS_{n}^{t})$$

- Backtrack the transitions to t₁ and keep track of q most likely starting times (kts₁, kts₂,..., kts_q) during kte_{i-1} and kte_i
- Likelihood of event instance i that ends at kte_i is defined as the maximum value of P'(MS_nt|O) during (kte_{i-1}, kte_i)

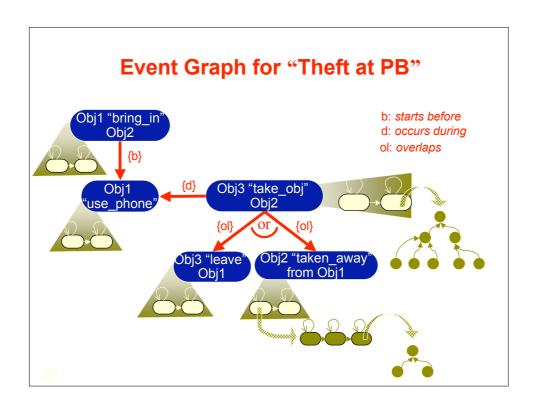

25

Simulation: Concatenation of "Avoid" and "Go Through"

Sequence A3

Multi-Thread Event Modeling

- Global activities can be described by several actors performing related actions ...
 - Action threads are related by temporal/logical constraints
 - May overlap in a non-linear fashion
- ... represented by an event graph
 - Nodes are single-thread events
 - Links indicate temporal relations represented by Interval-Based Temporal Logic
 - "starts", "meets", "during", "before", "overlaps", ...


"Theft at Phone Booth (PB)"

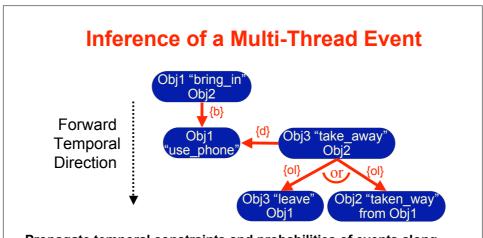
- Defines five action threads:
 - Obj1 bring-in Obj2
 - Obj1 use-phone
 - Obj3 take Obj2
 - Obj3 leave Obj1
 - Obj2 taken-away-from Obj1

Defines the appropriate temporal relations

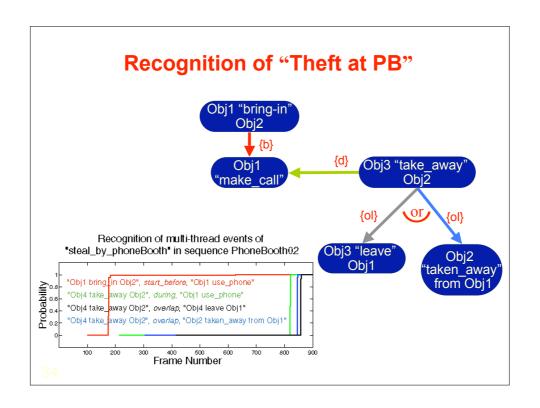
- Obj1 bring-in Obj2 starts before Obj1 use-phone
- Obj3 take Obj2 occurs during Obj1 use-phone
- ...

Multi-Thread Event Recognition

- Individual event recognition is uncertain
- Several instances of events may be detected during a period of time
 - "approaches", "stops", "approaches"....
- Search for the event threads that best fit the required "interval-based relations"
 - How to evaluate the relations of event instances?


31

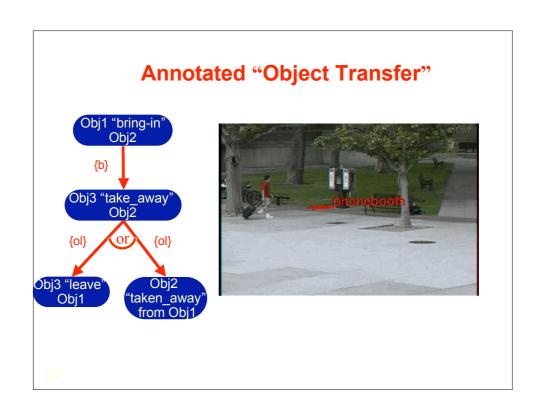
Evaluation of Temporal and Logical Relations

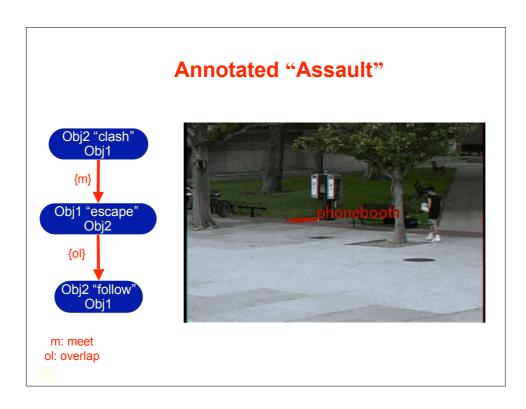

- Temporal Relations are evaluated by combining the probabilities of event instances subject to the corresponding temporal constraint
 - P("A starts before B") = $\max_{V (m,n)} P(B_n), \text{ if } Start(A_m) < Start(B_n),$

where "m" and "n" indicate instances of events

- Logical Relation "Or" is evaluated by taking the maximum value, i.e.
 - $P(\text{``A or B''}) = \max_{V (m,n)} (P(A_m), P(B_n))$

- Propagate temporal constraints and probabilities of events along forward temporal direction of event graph
 - We need to consider "bring_in before use_phone" before we evaluate "take_away during use_phone"
- O(TP^{R+1}) complexity if there are R event relations and P average number of event instances with different starting times


Annotated Videos


- Needs standard interface for video content descriptions
 - eXtended Markup Language (XML) interface can be defined for event descriptions
- Event analysis results can be written in XML
 - moving object and event descriptions
 - allows the search for content of videos
- Information in XML files can be parsed and overlaid on the original videos for visualization

35

Annotated "Theft at PB"

Performance

- 96.7% accuracy on discriminating competing single-thread events of 30 objects (including human and vehicles)
- Small trajectory perturbation with Gauss noise
 - Performance drops 5% on 40 simulated noisy sequences corrupted with N(μ =0, σ =6.68cm), equivalent of human walking speed variance
- Large variations simulating different execution styles (and some tracking blunders)
 - 81% detection rate, 16% false alarms

39

Computation Time

- P2-333 MHz, 128 MB RAM (approximately 1/8th of today's processing power)
- Computation time excludes motion detection and tracking processes

Sequence	No of objs	Frames	SE/CE/MT/Ctx	Time (sec)	fps
Chekpnt A	2	109	38/3/0/1	2.5	43.6
Chekpnt D	3	292	38/3/0/1	18	16.22
Assault	2	240	68/8/1/0	22.5	10.67
Object Transfer	3	640	83/11/3/1	453	0.71
Steal by Blocking	4	460	104/15/2/3	994	0.46

1 ∩

Conclusion and Future Work

- Probabilistic event analysis is robust, but performance depends on tracking accuracy
- Closely coordinated actions (e.g. dancing) may require enhancements to the framework
- Object recognition remains a difficult problem
- A language formalism can be provided for defining events to ease human communication
- Needs to extend high level interpretation logic
- Extension to multi-camera systems
- Integrates with other types of information
 - Face, gestures, sounds, text, etc.