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Basic Constraint Consistency
Algorithm

Given:
• Variables V1, V2, ... , VN, each with an associated domain dom(Vi)
• Constraint relations on various subsets of variables determine

acceptable combinations of these variables.

Consistency Algorithm:
A Of each domain, prune values which are ruled out by any of the

constraints.   =>  domain consistency
B Of each domain, prune values for which there are no corresponding

values in each of the constraint relations.  Repeat until no more
values can be pruned.  =>  arc consistency

C If one domain is empty there is no solution. If each domain has a
single value, the values are a unique solution.

D If some domains have more than one value, the values may or may
not be a solution. By repeatedly splitting a domain and solving the
reduced constraint problem, all solutions can be obtained.
=>  global consistency
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Constraint Evaluation for
Stepwise Scene Interpretation

Incremental scene interpretation requires incremental constraint evaluation.
Case 1:
As a scene develops in time, which occurrences can be expected based
on past occurrences and constraints relating to the future?
Case 2:
As objects of a scene are composed to tentative aggregates, what
constraints are relevant for further parts?

Incremental constraint evaluation serves to reduce search space and
remaining interpretation possibilities.

Example 1:
In a traffic scene, a ball running across the street raises the expectation of a
child following the ball.
Example 2:
Given constraints for the distance of table-leg positions, the space of
possible positions is reduced as table-legs are recognised incrementally.
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Checking Temporal Constraints for
Scene Interpretation

Variables:  Time variables of an aggregate model
Domains:  Time points covering the period of interest
Constraints: 1.  Constraints imposed by aggregate model

2.  Constraints arising from evidence  

Example:

name: traffic_ light_violation
parts: red_traffic_light

pass_traffic_light
constraints: pass_traffic_light during red_traffic_light

Aggregate model:

Scene: red_traffic_light
pass_traffic_light

t
10:05:00 10:06:00 10:07:00 10:08:00
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Constraint Net for
Traffic-Light Violation

Nodes:
A = red_traffic_light.beg
B = red_traffic_light.end
C = pass_traffic_light.beg
D = pass_traffic_light.end 

Arcs:
A ≤ C
B ≥ D
A < B
C < D

Domains:  dom(A) = dom(B) = dom(C) = dom(D) = { 0:0:0 ... 23:59:59 }

pass_traffic_light during red_traffic_light

begin of occurrence before end

A B

C D

<

<

≤ ≥

{ 0:0:0 ... 23:59:59 } { 0:0:0 ... 23:59:59 }

{ 0:0:0 ... 23:59:59 } { 0:0:0 ... 23:59:59 }

Step 1: Obtain consistency for initial constraint net 
Step 2: Observe A=10:05:08, prune dom(A), obtain consistency
Step 3: Observe C=10:05:30, prune dom(C), obtain consistency
Step 4: Observe B=10:05:33, prune dom(B), obtain consistency
 Step 5: Observe D=10:05:36, prune dom(D), obtain consistency, no solution is possible

Animated slide!

{ 0:0:123:59:58 }

23:59:58 } { 0:0:1{ 10:05:08 } { 10:05:09 ... 23:59:59 }

{ 10:05:08 ... 23:59:59 }{ 10:05:30 } { 10:05:31 ... 23:59:59 }

{ 10:05:31 ... 23:59:59}{ 10:05:33 }

{ 10:05:31 ... 10:05:33 }{  }

{  }{  }

{  }
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Constraint Propagation in
Convex Time-point Algebra

Variables: time variables Ti  
Domain of a variable: range of integers [timin .. timax]
Constraints: inequalities with offset Ti + cik ≤ Tk  

• Domains may always be represented by min- and max-values ("convexity
property").

• An increase of a min-value affects only time variables connected in edge
direction.

• A decrease of a max-value affects only time variables connected against
edge direction.

• In a cycle-free constraint net with N variables, any change of a domain
can be propagated in at most N(N-1) steps.

Graphical representation: Ti Tk

timin

timax tkmax

tkmin

cik
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Constraint Propagation for
Occurrence Recognition (1)

1. Initialize constraint net of occurrence model

mv1.tb mv1.te30
∞

-∞ -∞

∞

mv2.tb mv2.te30
∞

-∞ -∞

∞

2. Compute primitive events for scene

bh.tb bh.te
0

∞

-∞ -∞

∞
0

0
0

1

ID: move1
instance: move
parts: mv-ob = obj1

mv-tr = trj1
times: mv-tb = 13

mv-te = 47

ID: behind1
instance: behind
parts: bh-ob1 = obj1

bh-obj2 = obj2
times: bh-tb = 20

bh-te = 33

(and many more)

Example:  
Verify occurrence "two moving objects, one behind the other"
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Constraint Propagation for
Occurrence Recognition (2)

3. Instantiate parts in occurrence model

Propagate minima and maxima of time points through constraint net:

- minima in edge direction t2min´ = max {t2min, t1min + c12}

- maxima against edge direction t1max´ = min {t1max, t2max - c12}

30
∞

-∞ -∞

∞
30

∞

-∞ -∞

∞

0

-∞ -∞

∞

0

0
0

1

13

13

mv1.tb

47

47

mv1.te

∞

13 14

14

mv2.te

47

bh.te

46

bh.tb

ID: move1
instance: move
parts: mv-ob = obj1

mv-tr = trj1
times: mv-tb = 13

mv-te = 47

Example: move1 in scene instantiates mv1 of model

Animated slide!

46

mv2.tb
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Constraint Propagation for
Occurrence Recognition (3)

4. Consistency and completeness test

A (partially) instantiated model is inconsistent, if for any node T one
has: tmin > tmax

=> search for alternative instantiations or terminate with failure

An occurrence has been recognized if the occurrence model is
instantiated with sufficient completeness and the instantiation is
consistent.
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Convex Time-point Algebra
Constraint Nets with Cycles

T1 T2 • • • Tk
c12 c23

ck1

t1 + c12 ≤ t2    t2 + c23 ≤ t3   ...   tk + ck1 ≤ t1
⇒ c12 + c23 + ... + ck1 ≤ 0

Σ cik ≤ 0 :
The edge Tk - T1 can be omitted without affecting the propagation
results.

Σ cik > 0 :
Propagation will always lead to inconsistency, can be avoided
alltogether.

Complexity of constraint propagation is not affected by cycles
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Basic Relations in
Allen´s Interval Algebra

><

mim

oio

fif

did

sis

=

A before B

A meets B

A overlaps B

A finishes B

A during B

A starts B

A equals B
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Composition Table for Interval Algebra (1)

>

>

oi mi >

oi mi >

d f oi mi >

s = si

si

si

di

oi mi >

o fi di

m

<
si

>

>

di si oi mi >

di si oi mi >

full

< m o fi di

di

di

di

di

< m o fi di

<

<
di

>

mi

di si oi

f = fi

< m o s d

< m o

fi

di

di

fi

< m o

<

<
fi

sio fi dio fi di< m o fi disi

s< m o<<s
d< m o s d<<d

dio fi dio fi di< m o fi didi

fiom<fi

fo s dm<f

>d f oi mi >d f oi mi >full>

mid f ois = si< m o fi dimi

oio fi di si = s d f oio fi di< m o fi dioi

=om<=

o< m o<<o

m<<<m

<<<<<
=om<

For  I1 R12 I2  and  I2 R23 I3, the table specifies possible relations  I1 R13 I3. 
=> enables spatial reasoning



7

13

Composition Table for Interval Algebra (2)

d f oi mi >

d f oi

d f oi

d

d

s

s

s = si

o fi di

o

o

m

<
s

d f oi mi >

d f oi

d f oi

d

d

d

d

d f oi

o fi di si = s
d f oi

o s d

o s d

o s d

< m o s d
d

<

mi

di si oi

f = fi

< m o s d

p m o

f

di

di

fi

o s d

o s d

< m o s d
f

>mioisisi

>mid f oiss

di si oi mi pidi si oidi si oididi

>>d f oi mi >dd

di si oi mi pidi si oidi si oififi

>>oi mi >ff

>>>>>

>>>mimi

>>oi mi >oioi

>mioi==

di si oi mi >di si oio f d s = si di fi oioo

di si oi mi >fi = fo s dmm

full< m o s d< m o s d<<
>mioi=

Note that only 27 disjunctive combinations out of 8192 possible
combinations occur.
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Conceptual Neighborhoods

In order to permit coarse reasoning, it is useful to identify "neighboring"
interval relations.

Two relations between pairs of events are conceptual neighbors if they
can be directly transformed into one another by continuous deformation
(i.e. shortening or lengthening) of the events.

Conceptual neighborhood structure:

< m o = oi mi >

s d f

fi di si

Note that entries of the composition table contain only conceptual neighbors.

C. Freksa: Conceptual Neighborhood and its role in temporal and spatial reasoning. In: M. Singh,
L. Trave-Massuyes (eds.), Proc. IMACS Workshop on Decision Support Systems and Qualitative
Reasoning, North-Holland, 1991, 181-187
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Coarse Reasoning

Generate new "primitive" relations for coarse reasoning by combining
conceptual neighbors out of the 13 original primitive relations.

{<}  {m}  {o fi di}  {s = si}  {d f oi}  {o s d}  {fi = f}  {di si oi}  {mi}  {>} 

The 10 coarse primitives generate a combination table for coarse inferences
by disjunctive merging of rows and columns of the original table.

Example:
{o fi di}  X  {di si oi}  =>  {m o fi di si = s d f oi mi}

Reasoning within conceptual neighborhoods is monotonic:
If more information is added (i.e. disjunctive uncertainty removed), the
refined result is contained in the coarse result.
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Constraint Satisfaction with Intervals (1)
Constraint graph for reasoning with time intervals

Nodes:  time intervals
Arcs: disjunctions of interval relations

Example:  Pouring-tea-into-cup
Assume that picking up a cup immediately precedes holding a cup, and
pouring tea occurs during holding a cup.

pick up
cup

hold
cup

pour
tea

{m} {di si fi}

{< m}

Possible relations between pick-up-cup and pour-tea can be inferred
using the composition table.

Animated slide!
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Constraint Satisfaction with Intervals (2)

As observations of a specific scene become available, arc labels are
pruned and remaining constraints can be checked for arc consistency.

But: Arc consistency does not guarantee global consistency!

Example 1:  hold-cup overlaps pour-tea
=>  inconsistent with model

Example 2:  pick-up-cup meets pour-tea
=>  di and fi relations between hold-cup and pour-tea are pruned

pick up
cup

hold
cup

pour
tea

{m} {di si fi}

{< m}

In general, interval constraint nets can be
pruned by checking all triangles against the
combination table until no more changes occur. A

B

C
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Spatial Constraints
In scene interpretation, spatial constraints restrict the relative position
and orientation of parts of aggregates.

Example:
Relative positions of plate,
saucer and table boundary
as parts of a cover

Several ways to represent 2D spatial constraints:
• Bounding box constraints
• Topological relations
• Various other qualitative spatial representations
• Grid region constraints
• Probability distributions



10

19

Bounding Box Constraints

x

y
A bounding box is
specified by
xmin, xmax, ymin, ymax
relativ to a reference
coordinate system

• object-centric vs. global reference coordinate system
• position constraints in terms of relative distances between

bounding-box boundaries
• orientation constraints in terms of angles between object axes

A bounding box is an approximate 2D shape description

20

Extending Discrete Time-point Algebra
to 2D-Space

Use linear inequalities independently in two spatial dimensions.
(Bounding boxes must be parallel to reference system.)

Example: plate.x-end ≤ saucer.x-beg + 10
plate.x-end ≥ saucer.x-beg + 8
plate.y-end ≤ saucer.y-beg + 5
plate.y-end ≥ saucer.y-beg + 3
plate.x-beg ≥ table.x-beg
plate.x-end ≤ table.x-end
plate.y-beg ≤ table.y-beg + 5
plate.y-beg ≥ table.y-beg

Pairwise constraints can be combined to (quantitative) interval constraints:

plate.x-end  in  saucer.x-beg + [8 10]
plate.y-end  in  saucer.y-beg + [3 5]
plate.x-beg  in  table.x-beg + [0 inf]
plate.x-end  in  table.x-end + [-inf 0]
plate.y-beg  in  table.y-beg + [0 5]

in

[8 10]plate.
x-end

saucer.
x-beg

plate.
x-end

saucer.
x-beg

≤

≤

10

-8

equivalent!
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Extending Allen´s Interval Algebra to
2D-Space

Use Allen´s interval relations independently for two spatial dimensions. 

Example:

A

B horizontal relation: A o B
vertical relation: A < B

combination: A o|< B 

Interval relations are often not restrictive enough to describe the
variability of realistic spatial configurations.
Example: Cover configuration

plate o|m saucer
plate d|d table
plate >|s fork
plate <|s knife
saucer d|d table
fork d|d table
knife d|d table

Also covered by this description:

Animated slide!
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Topological Relations in RCC8

Elementary relations (disjunct):

• disconnected

• externally connected

• partial overlap

• tangential proper part

• non-tangential proper part

• equal

Composed relations:
• spatially_related
• connected
• overlapping
• inside

dc

ec

po

tpp tppi

ntpp ntppi

eq

RCC8: Region Connection Calculus with 8 topological binary relations
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RCC8 Conceptual Neighborhoods

Conceptual neighborhoods:

a

b

a

b

a

b
a b

ba

ab

ba

ab

Observations of two regions at two time points must be connected by
transitions along a conceptual-neighborhood path.

dc           ec             po

tpp ntpp

eq

tppi ntppi

24

RCC8 Composition Table
Table entries denote possible relations RAC, given RAB and RBC
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Spatial Relations as Grid-Point Sets

Relative location is a relation
O x R
between an object o and some
point r.

A grid region describes the possible locations (implicit OR) of a point r
relativ to a reference point and a reference orientation of an object o.

Example:
O = plate
r  = center-of-gravity of saucer

26

SE

FRONT

NEAR

Qualitative Spatial Relations
as Grid-Point Sets

Grid-point sets constitute
qualitative location concepts

Constraint propagation is possible
via set relationships

Example:
(SE plate saucer) ^
(FRONT plate saucer)
      =>  inconsistent

Animated slide!



14

27

Probability Distributions

Constraints on the coordinates (x, y) of a point relative to a
reference coordinate system can be expressed in terms of a
probability distribution (density).

x

y

p(R) probability density for
saucer position

Probabilistic reasoning will be treated later.

Compare with inequality
constraints!


