

Basic Constraint Consistency Algorithm

<u>Given</u>:

- Variables V₁, V₂, ..., V_N, each with an associated domain dom(V_i)
- Constraint relations on various subsets of variables determine acceptable combinations of these variables.

Consistency Algorithm:

- A Of each domain, prune values which are ruled out by any of the constraints. => domain consistency
- B Of each domain, prune values for which there are no corresponding values in each of the constraint relations. Repeat until no more values can be pruned. => arc consistency
- C If one domain is empty there is no solution. If each domain has a single value, the values are a unique solution.
- D If some domains have more than one value, the values may or may not be a solution. By repeatedly splitting a domain and solving the reduced constraint problem, all solutions can be obtained.
 => global consistency

Constraint Evaluation for Stepwise Scene Interpretation

Incremental scene interpretation requires incremental constraint evaluation.

Case 1:

As a scene develops in time, which occurrences can be expected based on past occurrences and constraints relating to the future?

Case 2:

As objects of a scene are composed to tentative aggregates, what constraints are relevant for further parts?

Incremental constraint evaluation serves to reduce search space and remaining interpretation possibilities.

Example 1:

In a traffic scene, a ball running across the street raises the expectation of a child following the ball.

Example 2:

Given constraints for the distance of table-leg positions, the space of possible positions is reduced as table-legs are recognised incrementally.

Variables	Tim	o variablee e	f an aggreg	ato modol		
Nomaine:	Tim	e variables o o pointe cov	oring the po	riod of intere	et	
Constraints:	1 0	onstraints in	mosed by a	nou or intere	əl Məl	
oonstramts.	2. 0	Constraints a	rising from (evidence		
			-			
Example:						
Aggregate mod	del:	name: t	raffic light viol	ation		
		parts: r	ed_traffic_light			
		constraints: p	ass_traffic_ligh	t during red_tra	ffic_light	
Coores						
Scene: red_	traffic_	light ——				_
pass	s_trainc	_iigiit 			· ••••	1
		40.05.00	10.06.00	10.07.00	10.08.00	

Constraint Propagation for Occurrence Recognition (3)

4. Consistency and completeness test

A (partially) instantiated model is inconsistent, if for any node T one has: t_{min} > t_{max}

=> search for alternative instantiations or terminate with failure

An occurrence has been recognized if the occurrence model is instantiated with sufficient completeness and the instantiation is consistent.

Composition Table for Interval Algebra (1)

For $I_1 R_{12} I_2$ and $I_2 R_{23} I_3$, the table specifies possible relations $I_1 R_{13} I_3$. => enables spatial reasoning

	<	m	0	fi	di	si	=
^	<	<	<	<	<	<	<
m	<	<	<	<	<	m	m
0	<	<	< m o	< m o	< m o fi di	o fi di	o
fi	<	m	0	fi	di	oi mi >	fi
di	< m o fi di	o fi di	o fi di	di	di	di	di
si	< m o fi di	o fi di	o fi di	di	di	si	si
=	<	m	0	fi	di	si	=
s	<	<	< m o	< m o	< m o fi di	s = si	s
d	<	<	< m o s d	< m o s d	full	d f oi mi >	d
f	<	m	o s d	f = fi	di si oi mi >	oi mi >	f
oi	< m o fi di	o fi di	o fi di si = s d f oi	di si oi	di si oi mi >	oi mi >	oi
mi	< m o fi di	s = si	dfoi	mi	>	>	mi
>	full	d f oi mi >	d f oi mi >	>	>	>	>

	_		d	4	ai	mai	
	-	S	u .	1	01	mi .	2
<	<	<	< m o s d	< m o s d	< m o s d	< m o s d	full
m	m	m	osd	osd	osd	fi = f	di si oi mi >
0	o	0	o s d	osd	o f d s = si di fi oi	di si oi	di si oi mi >
fi	fi	0	osd	fi	di si oi	di si oi	di si oi mi pi
di	di	o fi di	o fi di si = s d f oi	di	di si oi	di si oi	di si oi mi pi
si	si	s = si	d f oi	di	oi	mi	>
=	=	s	d	f	oi	mi	>
s	s	s	d	pmo	dfoi	mi	>
d	d	d	d	< m o s d	d f oi mi >	>	>
f	f	d	d	f = fi	oi mi >	>	>
oi	oi	d f oi	d f oi	di si oi	oi mi >	>	>
mi	mi	d f oi	d f oi	mi	>	>	>
>	>	d f oi mi >	d foimi>	<	>	>	>

Note that only 27 disjunctive combinations out of 8192 possible combinations occur.

				ipos		ιανις		
Table	entries d	enote pos	sible relat	ions R _A	_{.c} , given R	$_{AB}$ and R_{E}	BC	
0	DC	EC	РО	TPP	NTPP	TPPi	NTPPi	EQ
	DC,EC,PO	DC,EC	DC,EC	DC,EC	DC,EC			
DC	TPP,NTPP	PO	PO	PO	PO	DC	DC	DC
	TPPi,=	TPP	TPP	TPP	TPP			
	NTPPi	NTPP	NTPP	NTPP	NTPP			
	DC,EC,PO	DC,EC,PO	DC,EC,PO	EC,PO	PO	DC		
EC	TPPi	=,TPP	TPP	TPP	TPP	EC	DC	EC
	NTPPi	TPPi	NTPP	NTPP	NTPP			
	DC,EC,PO	DC,EC,PO	DC,EC,PO	PO	PO	DC,EC,PO	DC,EC,PO	
PO	TPPi	TPPi	TPP,TPPi,=	TPP	TPP	TPPi	TPPi	PO
	NTPPi	NTPPi	NTPP,NTPPi	NTPP	NTPP	NTPPi	NTPPi	
		DC	DC,EC	TPP		DC,EC,PO	DC,EC,PO	
TPP	DC	EC	PO,TPP	NTPP	NTPP	=,TPP	TPPi	TPP
			NTPP			TPPi	NTPPi	
			DC,EC			DC,EC	DC,EC,PO	
NTPP	DC	DC	PO	NTPP	NTPP	PO	TPP, TPPi	NTPP
			TPP			TPP	NTPP,=	
			NTPP			NTPP	NTPPi	
	DC,EC,PO	EC,PO	PO	PO,=	PO	TPPi		
TPPi	TPPi	TPPi	TPPi	TPP	TPP		NTPPi	TPPi
	NTPPi	NTPPi	NTPPi	TPPi	NTPP	NTPPi		
	DC,EC,PO	PO	PO	PO	PO,TPP,=			
NTPPi	TPPi	TPPi	TPPi	TPPi	NTPP,TPPi	NTPPi	NTPPi	NTPP
	NTPPi	NTPPi	NTPPi	NTPPi	NTPPi			
EQ	DC	EC	PO	TPP	NTPP	TPPi	NTPPi	EQ

