Using Description Logics for
Scene Interpretation

Basic Structure for
Scene Interpretation with a DL System
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Meeting Basic Representational
Requirements with a DL System

* object oriented representations
yes, but needs user interface
* n-ary relations
no, only binary relations
¢ taxonomies
yes, automatically constructed from conceptdefinitions

* partonomies
yes, can be represented by roles

e spatial and temporal relations
can be computed from quantitative data via concrete domain
extensions

* qualitative predicates
can be computed from quantitative data via concrete domain
extensions

Concrete Domain Concepts in RACER

CDC— (a AN) (an AN) Example:
(no AN) Quantitative constraints on the size

(min AN integer)
(max AN integer)
(equal AN integer)

of an object

(> aexpr aexpr) (and (min size 13) (max size 20))
(>= aexpr aexpr)
(< aexpr aexpr) I I
(<= aexpr aexpr)
(= aexpr aexpr) integer-valued attribute "size"
aexpr — AN receives values from low-level vision

real
(+ aexpr1 aexpr1*)
aexpri
aexpri — AN
real
(* real AN)




DL Concept for a Cover

(equivalent cover
(and configuration
(exactly 1 cv-pl plate)
(exactly 1 cv-sc (and saucer (some near plate)))
(exactly 1 cv-cp (and cup (some on saucer)))
(subset cv-pl (compose cv-sc near))
(subset cv-sc (compose cv-cp on))))

¢ parts are expressed as qualified fillers of specific roles
e.g. cv-pl, cv-sc, cv-scp

¢ sameness (or distinctness) of parts and properties of
parts are expressed by the subset construct

e spatial constraints are modelled as primitive predicates
e.g. near, on

Example: DL Model for a Bridge

Assumptions:

Image analysis computes bottom-up
 strips (= lengthy regions)

e colours

* spatial relations (touch, contain)

TBox:
(equivalent bridge (equivalent strip-section
(and strip-section (and (some within strip)
(some has-road road) (= has-width within o has-width)))
(some has-river1 river) .
. . (equivalent road
(some has-river2 river) .
. (and strip
(subset has-road o contain) (some has-colour road-colour)))
(subset has-river1 o touch) ) :
(subset has-river2 o touch))) (equivalent river
(and strip
some has-colour river-colour
Example ABox: ¢ m
(instance strip1 strip) (related strip1 blue has-colour) (related strip1 strip3 touch)
(instance strip2 strip) (related strip2 blue has-colour) (related strip2 strip3 touch)
(instance strip3 strip) (related strip3 greyhas- colour) (related strip3 strip1 touch)
eee eee (related strip3 strip2 touch)

Problem: Generating instances of strip-section
Animated slide!




Simplified DL Concept for Placing a
Cover

(equivalent place-cover
(and agent-activity
(exactly 1 pc-tp1 (and transport (some tp-obj plate)))
(exactly 1 pc-tp2 (and transport
(some tp-obj saucer)
(some before (and transport (some tp-obj cup))))
(exactly 1 pc-tp3 (and transport (some tp-obj cup)))
(subset pc-tp3 (compose pc-tp2 before))))

Severe disadvantage of purely symbolic spatial and temporal constraints:

Pairwise constraints must be computed bottom-up by low-level vision
procedures irrespective of high-level concepts!

‘ Express spatial and temporal constraints as predicates over
concrete-domain elements

Quantitative Spatial and Temporal
Constraints

(equivalent place-cover
(and agent-activity

(exactly 1 pc-tp1 (and transport (some tp-obj plate))
(exactly 1 pc-tp2 (and transport (some tp-obj saucer))
(exactly 1 pc-tp3 (and transport (some tp-obj cup))
(<= pc-tp2 o tp-end pc-tp3 o tp-end)
(= pc-beg (minim pc-tp1 o tp-beg pc-tp2 o tp-beg pc-tp3 o tp-beg))
(= pc-end (maxim pc-tp1 o tp-end pc-tp2 o tp-end pc-tp3 o tp-end))
(<= (- pc-end pc-beg) max-duration))))

* Equality and inequality as concrete domain predicates
¢ Specific constraints for each concept

¢ Incremental constraint computation required for prediction!
Example: (and (= cv-sc o sc-loc cv-cp o cp-loc))
Known saucer position restricts expected cup positions




General Structure for Aggregate
Definitions

(equivalent <concept-name>
(and <parent-concept1> ... <parent-conceptN>
(<number-restriction1> <role-name1> <part-concept1>)

(<number-restrictionK> <role-nameK> <part-conceptK>)
<constraints between parts>))

Summary of DL constructs required for aggregates: ALCF(D)

=> aggregates can in principle be represented in RACER, however,
not all syntax features are currently available

DL Reasoning Services

ABox consistency checking is at the heart of all reasoning services

Model construction is the method of choice for many DL reasoners

Concept satisfiability

Concept subsumption

Concept disjointness

Concept classification

TBox coherence

ABox consistency w.r.t. a TBox

Instance checking

Most-specific atomic concepts of which an individual is an instance
Instances of a concept

Role fillers for a specified individual

Pairs of individuals related by a specified role
Conjunctive queries
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DL Reasoning Support for Scene
Interpretation

Maintaining a coherent knowledge base

Scene interpretation may require extensive common-sense knowledge,

intuitive knowledge representation is doomed

Maintaining consistent scene interpretations

A consistent ABox is a (partial) model and hence formally a (partial) scene
interpretation => ABox consistency checking ensures consistent scene

interpretations

ABox realization (computing most specific concepts for individuals)

cannot be used in general:
* scene interpretations cannot be deduced

¢ high-level individuals must be hypothesized before consistency check
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DL Support for Interpretation Steps

Aggregate instantiation
Determine aggregates for which an individual is a role filler
=> RACER query language

Instance specialization
Retrieve all specializations of a given concept
= use specialization hierarchy

Instance expansion
Instantiate parts of an aggregate instance
=> easy service by looking up the aggregate definition

Instance merging
Determine whether it is consistent to unify two individual descriptions
=> unification by recursive specialization can be supported

Important missing service:
Preference measure for choosing "promising" alternatives
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Extending Description Logics for
Default Reasoning

13

Defaults for Preferences

Idea:

If deductive rules are not suitable for scene interpretation, why not use
default rules which may apply in general but allow exceptions?

"Default rule” = inference rule in a situation lacking decisive knowledge

Classical example of Al literature:

All birds can fly.
Penguins cannot fly.
Tweety is a bird. => Tweety can fly. l nonmonotonic

Tweety is a penguin. => Tweety cannot fly. reasoning

If the logical framework allows several interpretations, default rules may
be used to select a preferred interpretation.

14|




Terminological Default Theories

¢ Default theory (W,D)
W = world description, D = set of defaults

¢ Default rules [Reiter, 1980]
o|BpL, B2, ...,pN
Y
You may conclude y if prerequisite o is true and y is consistent with 1 ... fn

¢ Different sets of extensions of (W,D)
skeptical vs. credulous consequence
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Example: Hypothesis Generation Using
Default Rules (1)

Task:
Generate hypotheses
fora, b, c

Animated slide!
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Example: Hypothesis Generation
Using Default Rules (2)

o Extension E1 Extension E2
a World description W
a: coun
b: area v bliicity BIELD
c:area c: lake CRIERE
(a,b) : contains
W, (AR D 2 mutually exclusive
(a,c) : overlaps .
(c,a) : overlaps extensions E1 and E2
Default rules Default rules D closed over W
area | country a:areal a: country a:areala:city a:areala:lake
country a : country a:city a: lake
are;ca’]ﬂtz b :areal b : country b :areal b : city b :areal b : lake
ty b : country b : city b : lake
area | lake
lake c:areal c : country c:arealc:city c:areal c: lake
¢ : country c:city c : lake
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Spatioterminological Background

Knowledge for Example

TBox
building_region = area N 3 (has_area) . building_features
natural_region = -building_region
country_region C building_region N large_area
city_region = building_region N -large_area
river_region C natural_region N area
lake_region € natural _region N area

Yoverlaps . —country_region N
Vinside . —country_region
city = city_region N Jinside . country_region
lake C lake_region
river C river_region N "overlaps . —lake_region N
Vinside . -lake_region N
Vcontains . L

river_flowing_into_lake = river N 3touches . —~lake_region

country = country_region N VYcontains . ~country_region N
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Spatioterminological Default Theories
with ,,ABox Patterns*

Default rules with ABox patterns instead of concept terms:

precondition pattern | justification pattern

consequence pattern

=> use concept memberships to conclude relationships
=> use relationships to conclude concept memberships

Example: {X: lake, Y: river} | { (X, Y) : disjoint }
{ (X, Y) : disjoint }

Conclude that a lake and a river are disjoint as long as this does not
lead to inconsistency.

19|
Example: River Flowing into Lake
ABox
a: lake
b : river
c : country
Default rules
{ X: lake, Y: river_flowing_into_lake } | { (X, Y) : touches }
{(X,Y) : touches }
{ X:river, Y: country, (X, Y) : inside} | {X : river_flowing_into_lake}
{X :river_flowing_into_lake}
Extension
a : river_flowing_into_lake
(a, b) : touches
Animated slide! 20
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How Useful are Defaults for
Scene Interpretation?

Defaults can be used as preference rules for the selection of
interpretation steps

Defaults can be integrated into reasoning services

Default reasoning (computing extensions) is computationally
expensive

Defaults are domain and task dependent

Defaults become unwieldy if their number grows
(compare with rule-based expert systems)
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