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Using Description Logics for
Scene Interpretation
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Basic Structure for
Scene Interpretation with a DL System

image sequence

low-level ABox description 
of image sequence

TBox concepts

high-level ABox description 
of image sequence

context knowledge

low-level image analysis
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Meeting Basic Representational
Requirements with a DL System

• object oriented representations
yes, but needs user interface

• n-ary relations
no, only binary relations

• taxonomies
yes, automatically constructed from conceptdefinitions

• partonomies
yes, can be represented by roles

• spatial and temporal relations
can be computed from quantitative data via concrete domain
extensions

• qualitative predicates
can be computed from quantitative data via concrete domain
extensions
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Concrete Domain Concepts in RACER

CDC → (a  AN)  (an  AN)
(no  AN)
(min  AN  integer)
(max  AN  integer)
(equal  AN  integer)
(>  aexpr  aexpr)
(>=  aexpr  aexpr)
(<  aexpr  aexpr)
(<=  aexpr  aexpr)
(=  aexpr  aexpr)

aexpr → AN
real
(+  aexpr1  aexpr1*)
aexpr1

aexpr1 → AN
real
(*  real  AN)

Example:
Quantitative constraints on the size
of an object

(and (min size 13) (max size 20))

integer-valued attribute "size"
receives values from low-level vision
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DL Concept for a Cover

(equivalent  cover
(and  configuration

(exactly  1  cv-pl  plate)
(exactly  1  cv-sc  (and  saucer  (some  near plate)))
(exactly  1  cv-cp  (and  cup  (some  on  saucer)))
(subset  cv-pl  (compose  cv-sc  near))
(subset  cv-sc  (compose  cv-cp  on))))

• parts are expressed as qualified fillers of specific roles
e.g. cv-pl, cv-sc, cv-scp

• sameness (or distinctness) of parts and properties of
parts are expressed by the subset construct

• spatial constraints are modelled as primitive predicates
e.g. near, on
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Example: DL Model for a Bridge
Assumptions:
Image analysis computes bottom-up
• strips (= lengthy regions)
• colours
• spatial relations (touch, contain)

(equivalent bridge
(and strip-section

(some has-road road)
(some has-river1 river)
(some has-river2 river)
(subset has-road o contain)
(subset has-river1 o touch)
(subset has-river2 o touch)))

(equivalent road
(and strip

(some has-colour road-colour)))

(equivalent river
(and strip

(some has-colour river-colour)))

TBox:

Example ABox:
(instance strip1 strip)
(instance strip2 strip)
(instance strip3 strip)
• • •

(related strip1 blue has-colour)
(related strip2 blue has-colour)
(related strip3 greyhas- colour)
• • •

(related strip1 strip3  touch)
(related strip2 strip3  touch)
(related strip3 strip1 touch)
(related strip3 strip2 touch)
• • •

Problem: Generating instances of strip-section

(equivalent strip-section
(and (some within strip)

(= has-width within o has-width)))

Animated slide!
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Simplified DL Concept for Placing a
Cover

Severe disadvantage of purely symbolic spatial and temporal constraints:
Pairwise constraints must be computed bottom-up by low-level vision
procedures irrespective of high-level concepts!

(equivalent  place-cover
(and  agent-activity

(exactly  1  pc-tp1  (and  transport  (some  tp-obj  plate)))
(exactly  1  pc-tp2  (and  transport

(some  tp-obj  saucer)
(some  before  (and  transport  (some tp-obj  cup))))

(exactly  1  pc-tp3  (and  transport  (some tp-obj  cup)))
(subset  pc-tp3  (compose  pc-tp2  before))))

Express spatial and temporal constraints as predicates over
concrete-domain elements
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Quantitative Spatial and Temporal
Constraints

(equivalent  place-cover
(and  agent-activity

(exactly  1  pc-tp1  (and  transport  (some  tp-obj  plate))
(exactly  1  pc-tp2  (and  transport  (some tp-obj  saucer))
(exactly  1  pc-tp3  (and  transport  (some tp-obj  cup))
(<=  pc-tp2 o tp-end  pc-tp3 o tp-end)
(=  pc-beg  (minim  pc-tp1 o tp-beg  pc-tp2 o tp-beg  pc-tp3 o tp-beg))
(=  pc-end  (maxim  pc-tp1 o tp-end  pc-tp2 o tp-end  pc-tp3 o tp-end))
(<=  (-  pc-end  pc-beg)  max-duration))))

• Equality and inequality as concrete domain predicates

• Specific constraints for each concept

• Incremental constraint computation required for prediction!
Example: (and (=  cv-sc o sc-loc cv-cp o cp-loc))
Known saucer position restricts expected cup positions
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General Structure for Aggregate
Definitions

(equivalent  <concept-name>
(and  <parent-concept1> ... <parent-conceptN>

(<number-restriction1>  <role-name1>  <part-concept1>)
. . .
(<number-restrictionK>  <role-nameK>  <part-conceptK>)
<constraints between parts>))

Summary of DL constructs required for aggregates:  ALCF(D)

=> aggregates can in principle be represented in RACER, however,
not all syntax features are currently available
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DL Reasoning Services

• Concept satisfiability
• Concept subsumption
• Concept disjointness
• Concept classification
• TBox coherence
• ABox consistency w.r.t. a TBox
• Instance checking
• Most-specific atomic concepts of which an individual is an instance
• Instances of a concept
• Role fillers for a specified individual
• Pairs of individuals related by a specified role
• Conjunctive queries

 ABox consistency checking is at the heart of all reasoning services 

 Model construction is the method of choice for many DL reasoners 
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DL Reasoning Support for Scene
Interpretation

• Maintaining a coherent knowledge base
Scene interpretation may require extensive common-sense knowledge,
intuitive knowledge representation is doomed

• Maintaining consistent scene interpretations
A consistent ABox is a (partial) model and hence formally a (partial) scene
interpretation  =>  ABox consistency checking ensures consistent scene
interpretations

ABox realization (computing most specific concepts for individuals)
cannot be used in general:
•   scene interpretations cannot be deduced
•   high-level individuals must be hypothesized before consistency check
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DL Support for Interpretation Steps

Aggregate instantiation
Determine aggregates for which an individual is a role filler
⇒ RACER query language

Instance specialization
Retrieve all specializations of a given concept
⇒ use specialization hierarchy

Instance expansion
Instantiate parts of an aggregate instance
⇒ easy service by looking up the aggregate definition

Instance merging
Determine whether it is consistent to unify two individual descriptions
=> unification by recursive specialization can be supported  

Important missing service:
Preference measure for choosing "promising" alternatives
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Extending Description Logics for
Default Reasoning
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Defaults for Preferences

Idea:
If deductive rules are not suitable for scene interpretation, why not use
default rules which may apply in general but allow exceptions?

"Default rule" = inference rule in a situation lacking decisive knowledge 

Classical example of AI literature:

All birds can fly.
Penguins cannot fly.
Tweety is a bird. =>  Tweety can fly.
Tweety is a penguin. =>  Tweety cannot fly.

nonmonotonic
reasoning

If the logical framework allows several interpretations, default rules may
be used to select a preferred interpretation.
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Terminological Default Theories
• Default theory (W,D)

W = world description, D = set of defaults

• Default rules [Reiter, 1980]
 α | β1, β2, ... , βn
            γ
 You may conclude γ if prerequisite α is true and γ is consistent with β1 ... βn

• Different sets of extensions of (W,D)
skeptical vs. credulous consequence

• Terminological default theories [Baader & Hollunder, 1991]
 -  α, β, γ concept terms

-  W = ABox, D = set of closed default rules
-  restricted semantics, no skolemization
-  concept terms become ABox membership assertions
-  consequence problem decidable
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Example: Hypothesis Generation Using
Default Rules (1)

World description W
a : country
b : area
c : area
(a,b) : contains
(b,a) : inside
(a,c) : overlaps
(c,a) : overlaps

a
b

c

Default rules
area | country
    country

area | city
     city

area | lake
     lake

Task: 
Generate hypotheses
for a, b, c

a : area | a : city
a : city

a : area | a : lake
a : lake

a : area | a : country
a : country

b : area | b : city
b : city

b : area | b : lake
b : lake

b : area | b : country
b : country

c : area | c : city
c : city

c : area | c : lake
c : lake

c : area | c : country
c : country

Default rules D closed over W

Animated slide!
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Extension E1

b : city
c : lake

Extension E2

b : lake
c : lake

b : area | b : lake
b : lake

c : area | c : lake
c : lake

Example: Hypothesis Generation
Using Default Rules (2)

World description W
a : country
b : area
c : area
(a,b) : contains
(b,a) : inside
(a,c) : overlaps
(c,a) : overlaps

a b

c

Default rules
area | country
    country

area | city
     city

area | lake
     lake

a : area | a : city
a : city

a : area | a : lake
a : lake

a : area | a : country
a : country

b : area | b : city
b : city

b : area | b : country
b : country

c : area | c : city
c : city

c : area | c : country
c : country

Default rules D  closed over W

2 mutually exclusive
extensions E1 and E2
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Spatioterminological Background
Knowledge for Example

TBox
building_region = area ∩  ∃ (has_area) . building_features
 natural_region = ¬building_region
country_region ⊆  building_region ∩  large_area
       city_region = building_region ∩  ¬large_area
     river_region ⊆  natural_region ∩  area
     lake_region ⊆  natural _region ∩  area
            country = country_region ∩ ∀contains . ¬country_region ∩ 

∀overlaps . ¬country_region ∩ 
∀inside . ¬country_region

                   city = city_region ∩ ∃inside . country_region
                 lake ⊆  lake_region
                 river ⊆  river_region ∩ "overlaps . ¬lake_region ∩ 

∀inside . ¬lake_region ∩ 
∀contains . ⊥

river_flowing_into_lake = river ∩ ∃touches . ¬lake_region
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Spatioterminological Default Theories
with „ABox Patterns“

precondition pattern | justification pattern
           consequence pattern

=> use concept memberships to conclude relationships
=> use relationships to conclude concept memberships

Default rules with ABox patterns instead of concept terms:

Example:    { X: lake, Y: river } | { (X, Y) : disjoint }
     { (X, Y) : disjoint }

Conclude that a lake and a river are disjoint as long as this does not
lead to inconsistency.
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Example: River Flowing into Lake

a
b

cloud
ABox
a : lake
b : river
c : country

Default rules
{ X: lake, Y: river_flowing_into_lake } | { (X, Y) : touches }

{ (X, Y) : touches }

{ X: river, Y: country, (X, Y) : inside} | {X : river_flowing_into_lake}
{X : river_flowing_into_lake}

c

Extension
a : river_flowing_into_lake
(a, b) : touches

Animated slide!
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How Useful are Defaults for
Scene Interpretation?

• Defaults can be used as preference rules for the selection of
interpretation steps

• Defaults can be integrated into reasoning services

• Default reasoning (computing extensions) is computationally
expensive

• Defaults are domain and task dependent

• Defaults become unwieldy if their number grows
(compare with rule-based expert systems)


