Wintersemester 2002/2003
Bernd Neumann

Übungen zur Vorlesung: Wissensbasierte Systeme

Blatt 4

Exercise 4.4:

Consider the problem of finding a path in the grid shown in Figure 4.12 from the position s to the position g. A piece can move on the grid horizontally and vertically, one square at a time. No step may be made into a forbidden shaded area.

a)
On the grid shown in Figure 4.12, number the nodes visited (in order) for a depth-first search from s to g, given that the order of the operators you will test is: up left, right, then down. Assume there is a cycle check. A node is visited when it is taken off the frontier.

b)
For the same grid, number the nodes visited, in order, for a best-first search from s to g. Manhattan distance should be used as the evaluation function. The Manhattan distance between two points is the distance in the x-direction plus the distance in the y-direction. It corresponds to the distance traveled along city streets arranged in a grid.
Assume that you have multiple-path pruning. What is the first path found?

c)
On the same grid, number the nodes visited, in order, for a heuristic depth-first search from s to g, given Manhattan distance as the evaluation function. Assume a cycle check. What’s the path found?

d)
Number the nodes in order for an A* search for the same graph. What’s the path found?

e)
Assume that you were to solve the same problem using dynamic programming. Give the dist value for each node, and show which path is found.

f)
Based on this experience, discuss which algorithms are best suited for this problem.

g)
Suppose that the graph extended infinetely in all directions. That is, there is no boundary, but s, g and the blocks are in the same relative positions to each other. Which methods would no longer find a path? Which would be the best method, and why?

Figure 4.12

Exercise 4.5:

Consider the following (real world) problem:

Due to Bill’s excessive drinking, it has been decided to limit him to exactly one liter of beer a day. You have only a 17-liter jug and a 7-liter jug. You can (1) fill either jug from a keg, (2) drink the contetns of a jug, or (3) pour beer from one jug to the other. Unfortunately, you are hopeless at guessing quantities. Given only these three operations, how can you restrict Bill’s beer drinking to exactly one liter a day? (That is, how can you get one liter of beer in a jug if you only can perform the above three actions?)

The solution to this problem can be reduced to a graph-searching algorithm.

(a) Give the structure of a node in the graph.

(b) Define the neighbours of an arbitrary node.

(c) Draw the first two levels of a breadth-first search from the initial state of both jugs being empty.

(d) What’s a suitable search strategy to use for this graph? Why?

Exercise 4.9:

Priority queues are important to implement search algorithms. The use of a sorted list is very inefficient. This exercise is to implement a more efficient version of priority queues. The functionality you will need to provide is

•
insertion of an element into a priority queue

•
removal of the smallest element from the priority queue

Removal should fail if the queue is empty.

Insertion and deletion must both be done in log n time, where n is the number of elements in the priority queue.

Hint: Represent a priority queue as a binary tree with the following properties:

•
The smallest element of the tree rooted at any node is at that node.

•
At every node, the left subtree either has the same number of elements or has exactly

one more element than the right subtree. To maintain this invariant upon insertion, insert a new element into the right subtree and swap the left and right subtrees. Do a similar operation on deletion.

Test this program by using it for heap sort, a sorting algorithm that involves putting all of the elements to be sorted onto a priority queue, and removing them in order.

Exercise 4.11:

There are at least two ways to represent the crossword puzzle shown below as a constraint satisfaction problem.

The first is to represent the word positions (A1, A2, A3, D1, D2, and D3) as variables, with the set words as possible values. The constraints are that where the words intersect the letter is the same.

The second is to represent the nine squares as variables. The domain of each variable is the set of letters of the alphabet, {a, b,, z}. The constraints are that there is a word in the word list that contains the corresponding letters. For example, the top-left square and the center-top square cannot both have the value a, because there is no word starting with aa.

(a) Give an example of pruning due to domain consistency, using the first representation (if one exists).

(b) Give an example of pruning due to arc consistency, using the first representation (if one exists).

(c) Are domain consistency plus arc consistency adequate to solve this problem using the first representation? Explain.

(d) Give an example of pruning due to domain consistency, using the second representation (if one exists).

(e) Give an example of pruning due to arc consistency, using the second representation (if one exists).

(f) Are domain consistency plus arc consistency adequate to solve this problem using the second representation?

(g)
Which representation leads to a more efficient solution using consistency-based techniques? Give the evidence on which you are basing your answer.

Word list:

add, ado, age, ago, aid, ail, aim, air, and, any, ape, apt, arc, are, ark, arm, art, ash, ask, auk, awe, awl, aye, bad, bag, ban, bat, bee, boa, ear, eel, eft, far, fat, fit, lee, oaf, rat, tar, tie.

s

g

