# Wissensbasierte Systeme (WBS)

18.123 - WS 2002/03

Bernd Neumann neumann@informatik.uni-hamburg.de Sprechzeit Do 16-17h

Sekretariat Frau Oskarsson, R-107 Tel. 42883-2450 oskarsson@informatik.uni-hamburg.de



- lectures in German, slides in English
- lectures and slides based on

Computational Intelligence

**A Logical Approach** 

David Poole Alan Mackworth Randy Goebel

Oxford University Press, 1998

• PDF versions of slides will be emailed to participants who wish to subscribe

### **Exercises, projects, tests**

- 1 hour of excercises per week in class
- participation in a project (to be announced) as "schriftlicher Leistungsnachweis"
- oral test in February as "mündlicher Leistungsnachweis"

## What is Computational Intelligence?

The study of the design of intelligent agents . An agent is something that acts in an environment. An intelligent agent is an agent that acts intelligently:

- its actions are appropriate for its goals and circumstances
- it is flexible to changing environments and goals
- it learns from experience
- it makes appropriate choices given perceptual limitations and finite computation



- The field is often called Artificial Intelligence.
- Scientific goal: to understand the principles that make intelligent behavior possible, in natural or artificial systems.
- Engineering goal: to specify methods for the design of useful, intelligent artifacts.
- Analogy between studying flying machines and thinking machines.

# Central hypotheses of CI

Symbol-system hypothesis:

• Reasoning is symbol manipulation.

#### **Church–Turing thesis:**

• Any symbol manipulation can be carried out on a Turing machine.





To use these inputs an agent needs a representation of them.

=> knowledge

Most common sense tasks rely on a lot of knowledge.



**Problem => representation => computation** 

A representation and reasoning system (RRS) consists of

- Language to communicate with the computer.
- A way to assign meaning to the symbols.
- **Procedures to compute answers or solve problems.**

**Example RRSs:** 

- **Programming languages: Fortran, C++,...**
- Natural Language

We want something between these extremes.



Testing a customer for credit-worthiness based on the assumption that professors with a family are credit-worthy

```
PRINT("What is your profession?")
IF READSTR = "professor" THEN
BEGIN
PRINT("Have you got a family?");
IF READSTR = "yes" THEN
PRINT("Congratulations! You are credit-worthy!")
END ELSE ...
```





Regel 1 Wenn(Anlasser arbeitet normal) dann (Batterie OK)

Regel 2 Wenn (Batterie OK) Und (Wert Tankuhr > 0) Und (Benzinfilter sauber) Dann (Problem = Zündanlage)

Regel 3 Wenn (Batterie OK) Und (Wert Tankuhr > 0) Und (nicht Benzinfilter sauber) Dann (Defekt = Benzinzuleitung)

Regel 4 Wenn (nicht Scheibenwischer OK) Und (nicht Licht OK) Dann (Defekt = Batterie leer)

Regel 5 Wenn (nicht Wert Tankuhr > 0) Dann (Defekt = Tank leer)

Regel 6 Wenn (Problem = Zündanlage) Und (Verteilerdose OK) Dann (Defekt = Zündspule)



Your car does not start? Rule-based expert system infers the cause.

### **Knowledge-based information retrieval**

| ARD<br>20.15<br>Fußball-WM<br>21.45<br>Sissi<br>22.30<br>Tagesthemen<br>23.00<br>The Rock | ZDF<br>20.15<br>China heute<br>21.15<br>Wetten, daß<br>22.00<br>Heute<br>22.30<br>Terminator 2 | RTL<br>20.15<br>Galactica<br>21.35<br>Braveheart<br>22.45<br>Sexshow<br>23.30<br>Speed | SAT.1<br>20.00<br>Dragonheart<br>21.00<br>Stirb langsam 2<br>22.15<br>Rolling Stones<br>23.00<br>Alien | user selects<br>examples                                        | Braveheart<br>Stirb langsam 2<br>Terminator 2<br>system<br>determines<br>similarity of                                  |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| ARDN20.152SchatzinselE21.452LindenstraßeS22.302TagesthemenE23.002ArmageddonA              | N3I20.152Eiskunstlauf021.002SterbehilfeI22.002Extra 3222.302AchterbahnI                        | RTL<br>20.15<br>Goldfinger<br>21.30<br>Dallas<br>22.15<br>Fitanic<br>23.30<br>Robocop  | PRO 7<br>20.00<br>Psycho II<br>21.00<br>Deep Impact<br>22.15<br>Killerwale<br>23.00<br>Arabella        | system<br>proposes<br>program items<br>with similar<br>contents | <ul> <li>Action/Horror</li> <li>Kino-Highlights</li> <li>bekannte Schauspieler</li> <li>Filme neueren Datums</li> </ul> |

# **Knowledge-based configuration**



Placing cabin equipment (seats, kitchens, lavatories, ...) based on

- customer wishes
- technical facilities
- legal constraints
- optimality criteria

# **Chapters and lectures (1)**

**Chapter 1: Computational Intelligence and Knowledge** 

- Lecture 1 in which we introduce computational intelligence and the role of agents.
- Lecture 2 in which we introduce the applications domains.

### **Chapters and lectures (2)**

- Chapters 2 & 3: A Representation and Reasoning System & Using Definite Knowledge
- Lecture 1 in which we introduce representation and reasoning systems, Datalog, its assumptions, and its syntax.
- Lecture 2 in which we present the semantics of ground Datalog.
- Lecture 3 in which we introduce variables, queries, answers, recursion, and limitations.
- Lecture 4 in which we talk introduce proofs, present the ground bottom-up procedure, and show soundness and completeness.
- Lecture 5 in which we introduce a top-down proof procedure (SLD Resolution).
- Lecture 6 in which we introduce variables and function symbols and how they are handled in proof procedures.

## **Chapters and lectures (3)**

#### **Chapter 4: Searching**

- Lecture 1 in which we introduce searching and graphs.
- Lecture 2 in which we present some blind search strategies.
- Lecture 3 in which we present heuristic search, including bestfirst search and A\* search.
- Lecture 4 in which we present various refinements to search strategies, including loop checking, multiple-path pruning, iterative deepening, bidirectional search, dynamic programming.
- Lecture 5 in which we introduce constraint satisfaction problems.
- Lecture 6 in which we consider consistency algorithms (arc consistency) and hill climbing for solving CSPs.

### **Chapters and lectures (4)**

#### **Chapter 5: Representing Knowledge**

- Lecture 1 in which we introduce knowledge representation issues and problem specification.
- Lecture 2 in which we consider representation languages and mapping from problems into representations.
- Lecture 3 in which we present semantic networks, frames, and property inheritance.



**Chapter 6: Knowledge Engineering** 

- Lecture 1 in which we introduce knowledge-based systems architectures and the notions of metalanguages and object languages.
- Lecture 2 in which we introduce meta-interpreters.
- Lecture 3 in which we discuss ask-the-user mechanisms.
- Lecture 4 in which we introduce knowledge-based explanation facilities



**Chapter 7: Beyond Definite Knowledge** 

- Lecture 1 in which we cover equality, inequality and the unique names assumptions.
- Lecture 2 in which we cover the unique names assumption and negation as failure.
- Lecture 3 in which we introduce integrity constraints and consistency-based diagnosis.

### **Chapters and lectures (7)**

#### **Chapter 8: Actions and Planning**

- Lecture 1 in which we introduce actions and planning and the robot planning domain.
- Lecture 2 in which we present the STRIPS representation.
- Lecture 3 in which we present the situation calculus.
- Lecture 4 in which we introduce planning.
- Lecture 5 in which we present the STRIPS planner.
- Lecture 6 in which we present regression planning.



**Chapter 9: Assumption-based Reasoning** 

- Lecture 1 in which we introduce assumption-based reasoning.
- Lecture 2 in which we show how to reason with defaults.
- Lecture 3 in which we introduce abduction and how it can be combined with default reasoning.



**Chapter 10: Using Uncertain Knowledge** 

- Lecture 1 in which we overview uncertainty and the role of probability.
- Lecture 2 in which we look at conditional independence and the representation of belief networks.
- Lecture 3 in which we look at making decisions under uncertainty.

## **Chapters and lectures (10)**

#### **Chapter 11: Learning**

- Lecture 1 in which we introduce machine learning and the issues facing any learning algorithm.
- Lecture 2 in which we introduce decision tree learning
- Lecture 3 in which we introduce neural networks.
- Lecture 4 in which we introduce case-based reasoning.

# **Chapters and lectures (11)**

#### **Chapter 12: Building Situated Robots**

- Lecture 1 in which we introduce agents, robotic systems and robot controllers.
- Lecture 2 in which we overview robot architectures and present hierarchical decomposition of robots.