Markov chain

> A Markov chain is a special sort of belief network:

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4$$

- Thus $P(S_{t+1}|S_0, ..., S_t) = P(S_{t+1}|S_t)$.
- > Often S_t represented the state at time t. Intuitively S_t conveys all of the information about the history that can affect the future states.

Stationary Markov chain

- A stationary Markov chain is when for all t > 0, u > 0, $P(S_{t+1}|S_t) = P(S_{u+1}|S_u)$ we have .
- We specify $P(S_0)$ and $P(S_{t+1}|S_t)$.
- It is of interest because:
 - > Simple model, easy to specify
 - > Natural
 - > The network can extend indefinitely

Hidden Markov Model

> A Hidden Markov Model (HMM) is a belief network:

- \triangleright $P(S_0)$ specifies initial conditions
- \blacktriangleright $P(S_{t+1}|S_t)$ specifies the dynamics
- \triangleright $P(O_t|S_t)$ specifies the sensor model

Example: localization

- Suppose a robot wants to determine its location based on its actions and its sensor readings. Called Localization
- > This can be represented by the augmented HMM:

Example localization domain

Circular corridor, with 16 locations:

 \blacktriangleright Doors at positions: 2, 4, 7, 11.

- Noisy Sensors
- Stochastic Dynamics

Robot starts at an unknown location and must determine where it is.

> () T

Example Sensor Model

$\blacktriangleright P(Observe \ Door \ | \ At \ Door) = 0.8$

$\blacktriangleright P(Observe \ Door \mid Not \ At \ Door) = 0.1$

Example Dynamics Model

- $\blacktriangleright P(loc_{t+1} = L | action_t = goRight \land loc_t = L) = 0.1$
- $\blacktriangleright P(loc_{t+1} = L + 1 | action_t = goRight \land loc_t = L) = 0.8$
- $\blacktriangleright P(loc_{t+1} = L + 2 | action_t = goRight \land loc_t = L) = 0.074$
- $P(loc_{t+1} = L' | action_t = goRight \land loc_t = L) = 0.002$ for any other location L'.
 - \succ All location arithmetic is modulo 16.
 - > The action *goLeft* works the same but to the left.

We can have many (noisy) sensors for a property.

Example:

