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Making Decisions Under Uncertainty
What an agent should do depends on:

➤ What the agent believes.Not only the most likely state

of affairs, but all ways the world could be, given the

agent’s knowledge. Sensing the world updates the

agent’s beliefs by conditioning on what is sensed.

➤ The agent’s goals.When an agent has to reason under

uncertainty, it has to consider not only what will most

likely happen but everything that may possibly happen.

Decision theory specifies how to trade off the desirability and

probabilities of the possible outcomes for competing actions.
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Decision Variables

➤ Decision variablesare like random variables that an

agent gets to choose the value of.

➤ A possible world specifies the value for each decision

variable and each random variable.

➤ For each assignment of values to all decision variables,

the measures of the worlds satisfying that assignment

sum to 1.

➤ The probability of a proposition is undefined unless you

condition on the values of all decision variables.
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Decision Tree for Delivery Robot

The robot can choose to wear pads to protect itself or not.

The robot can choose to go the short way past the stairs or a

long way that reduces the chance of an accident.

There is one random variable of whether there is an accident.

wear pads

don’t 
wear 
pads

short way

long way

short way

long way

accident

no accident

accident

no accident

accident

no accident

accident

no accident

w0 - moderate damage

w2 - moderate damage

w4 - severe damage

w6 - severe damage

w1 - quick, extra weight

w3 - slow, extra weight

w5 - quick, no weight

w7 - slow, no weight
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Expected Values
The expected value of a numerical random variable is its
average value, weighting possible worlds by their probability.

SupposeV is a numerical random variable andω is a possible
world. Letρ(V , ω) be the valuex such thatω |= V = x.

The expected valueof V is

E(V) =
∑

ω∈�

ρ(V , ω) × µ(ω).

The conditional expected valueof V givene is

E(V |e) =
∑

ω|=e

ρ(V , ω) × µe(ω).
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Utility

➤ Utility is a measure of desirability of worlds to an agent.

➤ Let U be a real-valued random variable such that

ρ(U, ω) represents how good the world is to an agent.

➤ Simple goals can be specified by: worlds that satisfy the

goal have utility 1; other worlds have utility 0.

➤ Often utilities are more complicated: for example, made

up from the amount of damage to a robot, how much

energy it has used up, what goals are achieved, and how

much time it has taken.
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Single decisions

In a single decision, the agent chooses a value for each

decision variable. Let compound decision variabled be the

tuple of all original decision variables. The agent can choose

d = di for anydi ∈ dom(d).

The expected utilityof decisiond = di is E(U|d = di).

An optimal single decisionis the decisiond = dmax whose

expected utility is maximal:

E(U|d = dmax) = max
di∈dom(d)

E(U|d = di).
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Sequential Decisions

➤ An intelligent agent doesn’t make a multi-step decision

and carry it out without considering revising it based on

future information.

➤ A more typical scenario is where the agent:

observes, acts, observes, acts, …

➤ Subsequent actions can depend on what is observed.

What is observed depends on previous actions.

➤ Often the sole reason for carrying out an action is to

provide information for future actions.

For example: diagnostic tests, spying.
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Sequential decision problems

➤ A sequential decision problemconsists of a sequence of

decision variablesd1, . . . , dn.

➤ Eachdi has aninformation setof variablesπdi , whose

value will be known at the time decisiondi is made.

➤ A policy is a sequenceδ1, . . . , δn of decision functions

δi : dom(πdi) → dom(di).

This policy means that when the agent has observed

O ∈ dom(πdi), it will do δi(O).
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Decision Networks

➤ A decision networkis a graphical representation of a

finite sequential decision problem.

➤ Decision networks extend belief networks to include

decision variables and utility.

➤ A decision network specifies what information is

available when the agent has to act.

➤ A decision network specifies which variables the utility

depends on.
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Decisions Networks
➤ A random variableis drawn as an

ellipse. Arcs into the node represent

probabilistic dependence.

➤ A decision variableis drawn as an

rectangle. Arcs into the node repre-

sent information available when the

decision is make.

➤ A value node is drawn as a dia-

mond. Arcs into the node represent

values that the value depends on.
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Example Decision Network

wear
pads? which

way?

accident

utility

This shows explicitly which nodes affect whether there is an

accident.
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Decision Network for the Alarm Problem

tampering

alarm

fire

leaving

report

see smoke

check
for

smoke
call
fire

department

U
smoke
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Utility Values for Alarm Decision Network 

fire

check
for

smoke

call
fire

department

U

check_for_smoke fire call_fire_department value (dollars)

yes yes call -210

yes yes don´t call -5010

yes no call -210

yes no don´t call -10

no yes call -200

no yes don´t call -5000

no no call -200

no no don´t call 0
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Expected Value of a Policy

➤ A policy δ is an assignment of a decision function

δi : dom(πdi) → dom(di) to each decision variabledi.

➤ Possible worldω satisfiespolicy δ, writtenω |= δ if the

world assigns the value to each decision node that the

policy specifies.

➤ The expected utility of policyδ is

E(δ) =
∑

ω|=δ

ρ(U, ω) × µ(ω),

➤ An optimal policy is one with the highest expected

utility.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 10, Lecture 6, Page 14

Finding the optimal policy

...

...

➤ If value node is only connected to a de-

cision node and (some of) its parents

➥ select a decision to maximize value

for each assignment to the parent.

➤ If it isn’t of thisform, eliminatethe

non-observed variables.

➤ Replace decision node with value node.

➤ Repeat till there are no more decision

nodes.
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Reduced Alarm Example

Eliminate the non-observed variables for the final decision.

report

see smoke

check
for

smoke
call
fire

department

U
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Complexity of finding the optimal policy

➤ If there arek binary parents, there are2k optimizations.

➤ If there areb possible actions, there areb2k
policies.

➤ The dynamic programming algorithm is much more

efficient than searching through policy space.
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Value of Information

➤ We can determine the value of informationX for a certain

decision D as utility of thenetwork with an arc from

X to D minus the utility of the network without the arc.

➤ The value of information is always non-negative.

➤ It is positive only if the agent changes its action

depending onX.
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