Building Situated Robots

Overview:

- > Agents and Robots
- Robot systems and architectures
- Robot controllers
- Hierarchical controllers

A situated agent perceives, reasons, and acts in time in an environment.

> An agent is something that acts in the world.

A purposive agent prefers some states of the world to other states, and acts to try to achieve worlds they prefer.

> () ()

> A robot is an artificial purposive agent.

What makes an agent?

- Agents can have sensors and effectors to interact with the environment.
- Agents have (limited) memory and (limited) computational capabilities.
- > Agents reason and act in time.

Robotic Systems

A robotic system is made up of a robot and an environment.

> A robot receives stimuli from the environment

> A robot carries out actions in the environment.

A robot is made up of a body and a controller.

> A robot interacts with the environment through its body.

The body is made up of:

sensors that interpret stimuli

 \succ actuators that carry out actions

The controller receives percepts from the body.

The controller sends commands to the body.

 \blacktriangleright The body can also have reactions that are not controlled.

A robotic system architecture

Implementing a controller

 \blacktriangleright A controller is the brains of the robot.

Agents are situated in time, they receive sensory data in time, and do actions in time.

> The controller specifies the command at every time.

The command at any time can depend on the current and previous percepts.

The Agent Functions

- Let *T* be the set of time points.
- A percept trace is a function from T into P, where P is the set of all possible percepts.
- ➤ A command trace is a function from T into C, where C is the set of all commands.
- A transduction is a function from percept traces into command traces that's causal: the action trace up to time *t* depends only on percepts up to *t*.

> A controller is an implementation of a transduction.

- A transduction specifies a function from an agent's history at time t into its action at time t.
- An agent doesn't have access to its entire history. It only has access to what it has remembered.
- The internal state or belief state of an agent at time *t* encodes all of the agent's history that it has access to.
- The belief state of an agent encapsulates the information about its past that it can use for current and future actions.

Functions implemented in a controller

For discrete time, a controller implements:

- A state transition function σ : S × P → S, where S is the set of belief states and P is the set of possible percepts.
 s_{t+1} = σ(s_t, p_t) means that s_{t+1} is the belief state following belief state s_t when p_t is observed.
- A command function $\chi : S \times P \rightarrow C$, where *S* is the set of belief states, *P* is the set of possible percepts, and *C* is the set of possible commands.

 $c_t = \chi(s_t, p_t)$ means that the controller issues command c_t when the state is s_t and p_t is observed.