
Computational Intelligence Chapter 2

Chapters 2&3: A Representation and

Reasoning System

• Lecture 1 Representation and Reasoning Systems.

Datalog.

• Lecture 2 Semantics.

• Lecture 3 Variables, queries and answers, limitations.

• Lecture 4 Proofs. Soundness and completeness.

• Lecture 5 SLD resolution.

• Lecture 6 Proofs with variables. Function Symbols.

⇐H ©David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1997 ⇑H⇒

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 3, Page 1

Variables

• Variables areuniversally quantifiedin the scope of a

clause.

• A variable assignmentis a function from variables into

the domain.

• Given an interpretation and a variable assignment,

each term denotes an individual and

each clause is either true or false.

• A clause containing variables is true in an interpretation

if it is true for all variable assignments.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

© Christopher. Habel – University of Hamburg – 2001

Supplements to Chapter 2, Lecture 3&4
Page 1Knowledge Based Systems

)

Remarks on “Semantics of Variables”

• Datalog
• Assignment ρ: V → D

• ρ assigns to each variable one element of the
domain.

• Schöning / F2-Vorlesung

• The interpretation (mapping) I treats the variables,
too, i.e. beyond constants, predicate and function
symbols.

• LOS (Logics and Semantics) course
• Assignment A: V → D

© Christopher. Habel – University of Hamburg – 2001

Supplements to Chapter 2, Lecture 3&4
Page 2Knowledge Based Systems

)

Evaluation of quantified expressions

Example domain (cg. Figure 2.1) :
• part_of (X, Y) ← in (X, Y)

is FALSE in the interpretation (cf. Lect. 2.1&2)
Assignment: ρ: X → alan´ Y → r123´

• in (X, Y) ← part_of (Z, Y) ∧ in (X, Z)
is TRUE in the interpretation (cf. Lect. 2.1&2),
since all assignments make the clause true.

Computational Intelligence Chapter 2, Lecture 1, Page 4

Role of Semantics in an RRS

in(alan,cs_building)

in(alan,r123).
part_of(r123,cs_building).
in(X,Y) ←
 part_of(Z,Y) ∧
 in(X,Z).

alan
r123
r023

cs_building

in(,)
part_of(,)

person()

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 3, Page 2

Queries and Answers

A query is a way to ask if a body is a logical consequence of

the knowledge base:

?b1 ∧ · · · ∧ bm.

An answer is either

• an instance of the query that is a logical consequence of

the knowledge baseKB, or

• no if no instance is a logical consequence ofKB.

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 3, Page 3

Example Queries

KB =

in(alan, r123).

part_of (r123, cs_building).

in(X, Y) ← part_of (Z, Y) ∧ in(X, Z).

Query Answer

?part_of (r123, B). part_of (r123, cs_building)

?part_of (r023, cs_building). no

?in(alan, r023). no

?in(alan, B). in(alan, r123)

in(alan, cs_building)

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

© Christopher. Habel – University of Hamburg – 2001

Supplements to Chapter 2, Lecture 3&4
Page 4

Knowledge Based Systems
)

Variables in Questions and Answers

• Example. 2.9 (Robot‘s world):
 two_doors_east (E, W) ←

imm_east (E, M) ∧ imm_east (M, W)
• Example. 2.12:

query: ?two_doors_east (R, r107)
• The relevant instances:

imm_east (r111, r109) ∧ imm_east (r109, r107)
• (specific) Answer clause

 yes (R) ← two_doors_east (R, r107)
• (general) Answer clause

 yes (V1,…, Vn) ← Body

Computational Intelligence Chapter 2, Lecture 3, Page 4

Logical Consequence

Atom g is a logical consequence ofKB if and only if:

• g is a fact inKB, or

• there is a rule

g ← b1 ∧ . . . ∧ bk

in KB such that eachbi is a logical consequence ofKB.

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 3, Page 5

Debugging false conclusions
To debug answerg that is false in the intended interpretation:

• If g is a fact inKB, this fact is wrong.

• Otherwise, supposeg was proved using the rule:

g ← b1 ∧ . . . ∧ bk

where eachbi is a logical consequence ofKB.

If eachbi is true in the intended interpretation, this

clause is false in the intended interpretation.

If somebi is false in the intended interpretation,

debugbi .

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 1, Lecture 2, Page 5

Domain for Diagnostic Assistant

light

two-way
switch

switch

off

on

power
outlet

circuit
breaker

outside power

l1

l2

w1

w0

w2

w4

w3

w6

w5

p2

p1

cb2

cb1

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

© Christopher. Habel – University of Hamburg – 2001

Supplements to Chapter 2, Lecture 3&4
Page 5Knowledge Based Systems

)

House Wiring: Ontology and intended interpretations

• Types of things:
Lights, Wires, Switches, Circuit breakers, Power outlets

• light (L) L is a light
lit (L) the light L is lit, and emitting light
live (W) W is live (power coming into W)
up (S), down (S) switch S is up / down
ok (E) E is not blown (lights, circ. br.)
connected_to (X,Y) components X & Y are connected

Computational Intelligence Chapter 2, Lecture 3, Page 6

Axiomatizing the Electrical Environment

% light(L) is true ifL is a light

light(l1). light(l2).

% down(S) is true if switchS is down

down(s1). up(s2). up(s3).

% ok(D) is true ifD is not broken

ok(l1). ok(l2). ok(cb1). ok(cb2).

?light(l1). H⇒ yes

?light(l6). H⇒ no

?up(X). H⇒ up(s2), up(s3)

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 3, Page 7

connected_to(X, Y) is true if componentX is connected toY

connected_to(w0, w1) ← up(s2).

connected_to(w0, w2) ← down(s2).

connected_to(w1, w3) ← up(s1).

connected_to(w2, w3) ← down(s1).

connected_to(w4, w3) ← up(s3).

connected_to(p1, w3).

?connected_to(w0, W). H⇒ W = w1

?connected_to(w1, W). H⇒ no

?connected_to(Y, w3). H⇒ Y = w2, Y = w4, Y = p1

?connected_to(X, W). H⇒ X = w0, W = w1, …

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 3, Page 8

% lit (L) is true if the lightL is lit

lit (L) ← light(L) ∧ ok(L) ∧ live(L).

% live(C) is true if there is power coming intoC

live(Y) ←
connected_to(Y, Z) ∧
live(Z).

live(outside).

This is a recursive definitionof live.

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

© Christopher. Habel – University of Hamburg – 2001

Supplements to Chapter 2, Lecture 3&4
Page 6Knowledge Based Systems

)

Exercise B : To discussed in Lecture 2. 5&6

• Extend the House Wiring domain:
i. Introduce an additional light of the class “desk lamp”, which is

connected via a power outlet.
Which facts and rules have to be added to the knowledge
base?

ii.Change the representation of switches by introducing the status
of connecting input and output wire - instead of using up and
down.
Which types of new individuals have to be introduced into the
domain?

Computational Intelligence Chapter 2, Lecture 3, Page 9

Recursion and Mathematical Induction

above(X, Y) ← on(X, Y).

above(X, Y) ← on(X, Z) ∧ above(Z, Y).

This can be seen as:

• Recursive definition ofabove: proveabovein terms of a

base case (on) or a simpler instance of itself; or

• Way to proveaboveby mathematical induction: the base

case is when there are no blocks betweenX andY, and if

you can proveabovewhen there aren blocks between

them, you can prove it when there aren + 1 blocks.

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 3, Page 10

Limitations

Suppose you had a database using the relation:

enrolled(S, C)

which is true when studentS is enrolled in courseC.

You can’t define the relation:

empty_course(C)

which is true when courseC has no students enrolled in it.

This is becauseempty_course(C) doesn’t logically follow

from a set ofenrolledrelations. There are always models

where someone is enrolled in a course!

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 4, Page 1

Proofs

• A proof is a mechanically derivable demonstration that

a formula logically follows from a knowledge base.

• Given a proof procedure,KB ` g meansg can be

derived from knowledge baseKB.

• Recall KB |= g meansg is true in all models ofKB.

• A proof procedure issound if KB ` g impliesKB |= g.

• A proof procedure iscomplete if KB |= g implies

KB ` g.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 4, Page 2

Bottom-up Ground Proof Procedure

One rule of derivation,a generalized form ofmodus ponens:

If “ h ← b1 ∧ . . . ∧ bm” is a clause in the knowledge

base, and eachbi has been derived, thenh can be

derived.

You are forward chainingon this clause.

(This rule also covers the case whenm = 0.)

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 4, Page 3

Bottom-up proof procedure

KB ` g if g ∈ C at the end of this procedure:

C := {};
repeat

selectclause “h ← b1 ∧ . . . ∧ bm” in KB such that

bi ∈ C for all i, and

h 6∈ C;
C := C ∪ {h}

until no more clauses can be selected.

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

© Christopher. Habel – University of Hamburg – 2001

Supplements to Chapter 2, Lecture 3&4
Page 7Knowledge Based Systems

)

Example 2.14: Bottom up proof procedure

Knowledge Base:
a← b ∧ c

b← d ∧ e

b← g ∧ e

c← e

d

e
f← a ∧ g

Consequence set C

1 2{ }

2 2{ d }

3 2{ d , e}

4 2{ b, d , e}

5 2{ b, c, d , e}

6 2{ a, b, c, d , e}

Computational Intelligence Chapter 2, Lecture 4, Page 4

Nondeterministic Choice

• Don’t-care nondeterminismIf one selection doesn’t

lead to a solution, there is no point trying other

alternatives.select

• Don’t-know nondeterminismIf one choice doesn’t lead

to a solution, other choices may.choose

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 4, Page 5

Example

a ← b ∧ c.

a ← e∧ f .

b ← f ∧ k.

c ← e.

d ← k.

e.

f ← j ∧ e.

f ← c.

j ← c.

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 4, Page 6

Soundness of bottom-up proof procedure

If KB ` g thenKB |= g.

Suppose there is ag such thatKB ` g andKB 6|= g.

Let h be the first atom added toC that’s not true in every

model ofKB. Supposeh isn’t true in modelI of KB.

There must be a clause inKB of form

h ← b1 ∧ . . . ∧ bm

Eachbi is true inI . h is false inI . So this clause is false inI .

ThereforeI isn’t a model ofKB.

Contradiction: thus no suchg exists.

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 4, Page 7

Fixed Point

TheC generated at the end of the bottom-up algorithm is

called a fixed point.

Let I be the interpretation in which every element of the fixed

point is true and every other atom is false.

I is a model ofKB.

Proof: supposeh ← b1 ∧ . . . ∧ bm in KB is false inI . Thenh

is false and eachbi is true inI . Thush can be added toC.

Contradiction toC being the fixed point.

I is called aMinimal Model.

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 4, Page 8

Completeness

If KB |= g thenKB ` g.

SupposeKB |= g. Theng is true in all models ofKB.

Thusg is true in the minimal model.

Thusg is generated by the bottom up algorithm.

ThusKB ` g.

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑

http://www.cs.ubc.ca/spider/poole/ci.html

