Chapters 2\&3: A Representation and

Reasoning System

- Lecture 1 Representation and Reasoning Systems. Datalog.
- Lecture 2 Semantics.
- Lecture 3 Variables, queries and answers, limitations.
- Lecture 4 Proofs. Soundness and completeness.
- Lecture 5 SLD resolution.
- Lecture 6 Proofs with variables. Function Symbols.

Variables

- Variables are universally quantified in the scope of a clause.
- A variable assignment is a function from variables into the domain.
- Given an interpretation and a variable assignment, each term denotes an individual and each clause is either true or false.
- A clause containing variables is true in an interpretation if it is true for all variable assignments.

Remarks on "Semantics of Variables"

- Datalog
- Assignment $\rho: V \rightarrow D$
- ρ assigns to each variable one element of the domain.
- Schöning / F2-Vorlesung
- The interpretation (mapping) I treats the variables, too, i.e. beyond constants, predicate and function symbols.
- LOS (Logics and Semantics) course
- Assignment $A: V \rightarrow D$

Evaluation of quantified expressions

Example domain (cg. Figure 2.1) :

- part_of $(X, Y) \leftarrow$ in (X, Y)
is FALSE in the interpretation (cf. Lect. 2.1\&2)
Assignment: $\rho: X \rightarrow$ alan' $\quad Y \rightarrow \mathrm{r}^{\prime} 23^{\prime}$
- in $(X, Y) \leftarrow$ part_of $(Z, Y) \wedge$ in (X, Z)
is TRUE in the interpretation (cf. Lect. 2.1\&2), since all assignments make the clause true.

Role of Semantics in an RRS

Queries and Answers

A query is a way to ask if a body is a logical consequence of the knowledge base:

$$
? b_{1} \wedge \cdots \wedge b_{m}
$$

An answer is either

- an instance of the query that is a logical consequence of the knowledge base $K B$, or
- no if no instance is a logical consequence of $K B$.

Example Queries

$$
K B=\left\{\begin{array}{l}
\text { in(alan }, r 123) . \\
\text { part_of }\left(r 123, c s _b u i l d i n g\right) . \\
\text { in }(X, Y) \leftarrow \text { part_of }(Z, Y) \wedge \text { in }(X, Z) .
\end{array}\right.
$$

Query
 Answer

?part_of(r123, B). part_of(r123, cs_building)
?part_of (r023, cs_building). no
?in(alan, r023). no
?in(alan, B). in(alan, r123)
in(alan, cs_building)

Variables in Questions and Answers

- Example. 2.9 (Robot's world): two_doors_east $(E, W) \leftarrow$ imm_east (E, M) ^imm_east (M, W)
- Example. 2.12: query: ?two_doors_east (R, r107)
- The relevant instances: imm_east (r111, r109) ^imm_east (r109, r107)
- (specific) Answer clause
yes $(R) \leftarrow$ two_doors_east $(R, r 107)$
- (general) Answer clause yes $\left(V_{1}, \ldots, V_{n}\right) \leftarrow$ Body

Logical Consequence

Atom g is a logical consequence of $K B$ if and only if:

- g is a fact in $K B$, or
- there is a rule

$$
g \leftarrow b_{1} \wedge \ldots \wedge b_{k}
$$

in $K B$ such that each b_{i} is a logical consequence of $K B$.

Debugging false conclusions

To debug answer g that is false in the intended interpretation:

- If g is a fact in $K B$, this fact is wrong.
- Otherwise, suppose g was proved using the rule:

$$
g \leftarrow b_{1} \wedge \ldots \wedge b_{k}
$$

where each b_{i} is a logical consequence of $K B$.

- If each b_{i} is true in the intended interpretation, this clause is false in the intended interpretation.
\square If some b_{i} is false in the intended interpretation, debug b_{i}.

Domain for Diagnostic Assistant

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998
$\Uparrow \Rightarrow$

House Wiring: Ontology and intended interpretations

- Types of things:

Lights, Wires, Switches, Circuit breakers, Power outlets

- light (L)
lit (L)
live (W)
up (S), down (S)
ok (E)
connected_to (X, Y)

L is a light the light L is lit, and emitting light W is live (power coming into W) switch S is up / down
E is not blown (lights, circ. br.) components X \& Y are connected

Axiomatizing the Electrical Environment

$\% \operatorname{light}(L)$ is true if L is a light
$\operatorname{light}\left(l_{1}\right) . \quad \operatorname{light}\left(l_{2}\right)$.
\% down (S) is true if switch S is down $\operatorname{down}\left(s_{1}\right)$. up $\left(s_{2}\right)$. up $\left(s_{3}\right)$.
\% ok(D) is true if D is not broken $o k\left(l_{1}\right) . \quad o k\left(l_{2}\right) . \quad o k\left(c b_{1}\right) . o k\left(c b_{2}\right)$.
?light $\left(l_{1}\right) . \Longrightarrow$ yes
?light $\left(l_{6}\right) . \Longrightarrow$ no
? up $(X) \quad \Longrightarrow \quad u p\left(s_{2}\right), u p\left(s_{3}\right)$
connected_to (X, Y) is true if component X is connected to Y

$$
\begin{aligned}
& \text { connected_to }\left(w_{0}, w_{1}\right) \leftarrow u p\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{0}, w_{2}\right) \leftarrow \operatorname{down}\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{1}, w_{3}\right) \leftarrow u p\left(s_{1}\right) \\
& \text { connected_to }\left(w_{2}, w_{3}\right) \leftarrow \operatorname{down}\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{4}, w_{3}\right) \leftarrow u p\left(s_{3}\right) . \\
& \text { connected_to }\left(p_{1}, w_{3}\right) .
\end{aligned}
$$

?connected_to $\left(w_{0}, W\right) . \quad \Longrightarrow \quad W=w_{1}$
?connected_to $\left(w_{1}, W\right) . \Longrightarrow n o$
?connected_to $\left(Y, w_{3}\right) . \quad \Longrightarrow \quad Y=w_{2}, Y=w_{4}, Y=p_{1}$
?connected_to $(X, W) . \quad X \quad X=w_{0}, W=w_{1}, \ldots$
$\% \operatorname{lit}(L)$ is true if the light L is lit

$$
\operatorname{lit}(L) \leftarrow \operatorname{light}(L) \wedge o k(L) \wedge \operatorname{live}(L)
$$

\% live (C) is true if there is power coming into C

$$
\begin{aligned}
& \text { live }(Y) \leftarrow \\
& \quad \text { connected_to }(Y, Z) \wedge \\
& \quad \text { live }(Z) . \\
& \text { live }(\text { outside }) \text {. }
\end{aligned}
$$

This is a recursive definition of live.

Exercise B : To discussed in Lecture 2. 5\&6

- Extend the House Wiring domain:
i. Introduce an additional light of the class "desk lamp", which is connected via a power outlet. Which facts and rules have to be added to the knowledge base?
ii.Change the representation of switches by introducing the status of connecting input and output wire - instead of using up and down.
Which types of new individuals have to be introduced into the domain?

Recursion and Mathematical Induction

$$
\begin{aligned}
& \text { above }(X, Y) \leftarrow \text { on }(X, Y) . \\
& \text { above }(X, Y) \leftarrow \text { on }(X, Z) \wedge \text { above }(Z, Y) .
\end{aligned}
$$

This can be seen as:

- Recursive definition of above: prove above in terms of a base case (on) or a simpler instance of itself; or
- Way to prove above by mathematical induction: the base case is when there are no blocks between X and Y, and if you can prove above when there are n blocks between them, you can prove it when there are $n+1$ blocks.

Limitations

Suppose you had a database using the relation: enrolled (S, C)
which is true when student S is enrolled in course C.
You can't define the relation:
empty_course (C)
which is true when course C has no students enrolled in it.
This is because empty_course (C) doesn't logically follow from a set of enrolled relations. There are always models where someone is enrolled in a course!

Proofs

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $K B \vdash g$ means g can be derived from knowledge base $K B$.
- Recall $K B \models g$ means g is true in all models of $K B$.
- A proof procedure is sound if $K B \vdash g$ implies $K B \models g$.
- A proof procedure is complete if $K B \models g$ implies $K B \vdash g$.

Bottom-up Ground Proof Procedure

One rule of derivation, a generalized form of modus ponens:

If " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " is a clause in the knowledge base, and each b_{i} has been derived, then h can be derived.

You are forward chaining on this clause.
(This rule also covers the case when $m=0$.)

Bottom-up proof procedure

$K B \vdash g$ if $g \in C$ at the end of this procedure:
$C:=\{ \} ;$
repeat
select clause " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " in $K B$ such that
$b_{i} \in C$ for all i, and
$h \notin C$;
$C:=C \cup\{h\}$
until no more clauses can be selected.

Example 2.14: Bottom up proof procedure

Knowledge Base:
$a \leftarrow b \wedge c$
$b \leftarrow d \wedge e$
$b \leftarrow g \wedge e$
$c \leftarrow e$
d
e
$f \leftarrow a \wedge g$

Consequence set C
1 \{\}
$2\{d\}$
3 \{d,e\}
$4\{b, d, e\}$
$5\{b, c, d, e\}$
6 \{a,b,c,d,e\}

Nondeterministic Choice

- Don't-care nondeterminism If one selection doesn't lead to a solution, there is no point trying other alternatives. select
- Don't-know nondeterminism If one choice doesn't lead to a solution, other choices may. choose

Example

$$
\begin{aligned}
& a \leftarrow b \wedge c \\
& a \leftarrow e \wedge f \\
& b \leftarrow f \wedge k \\
& c \leftarrow e \\
& d \leftarrow k \\
& e \\
& f \leftarrow j \wedge e \\
& f \leftarrow c \\
& j \leftarrow c
\end{aligned}
$$

Soundness of bottom-up proof procedure

If $K B \vdash g$ then $K B \models g$.
Suppose there is a g such that $K B \vdash g$ and $K B \not \vDash g$.
Let h be the first atom added to C that's not true in every model of $K B$. Suppose h isn't true in model I of $K B$.
There must be a clause in $K B$ of form

$$
h \leftarrow b_{1} \wedge \ldots \wedge b_{m}
$$

Each b_{i} is true in I. h is false in I. So this clause is false in I. Therefore I isn't a model of $K B$.

Contradiction: thus no such g exists.

Fixed Point

The C generated at the end of the bottom-up algorithm is called a fixed point.

Let I be the interpretation in which every element of the fixed point is true and every other atom is false.
I is a model of $K B$.
Proof: suppose $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ in $K B$ is false in I. Then h is false and each b_{i} is true in I. Thus h can be added to C. Contradiction to C being the fixed point.
I is called a Minimal Model.

Completeness

If $K B \models g$ then $K B \vdash g$.
Suppose $K B \models g$. Then g is true in all models of $K B$.
Thus g is true in the minimal model.
Thus g is generated by the bottom up algorithm.
Thus $K B \vdash g$.

