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e Often we are not given an algorithm to solve a proble
but only a specification of what is a solution — we havz
to search for a solution.

e Searchis a way to implement don’t know
nondeterminism.

e So far we have seen how to convert a semantic proble
of finding logical consequence to a search problem of
finding derivations.
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Search Grap

A graph consists of a sd¥l of nodesand a sefA of ordered
pairs of nodes, calle arcs.

Noden; is a neighbor of ny if there Is an arc fronm; to n,.
This i1s,{(n1, np) € A.

A path is a sequence of nodes, ny, ..., ng such that
(Ni—1, Nj) € A

Given a set o start nodesand goal nodes,a solution is a
path from a start node to a goal node.
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Example Graph for the Delivery Rok
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Search Graph for SLD Resoluti
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Graph Searchin

Generic search algorithm: given a graph, start nodes, gnd
goal nodes, incrementally explore paths from the start
nodes.

Maintain a frontier of paths from the start node that
have been explored.

As search proceeds, the frontier expands into the
unexplored nodes until a goal node is encountered.

The way in which the frontier is expanded defines the
search strategy.
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Generic Graph Search Algorit

searchiFg) <
selectNode Fg, F1) A
IS _goal(Node.
searchiFo) <«
selectNode Fg, F1) A
neighborgNode NN) A
add to frontier(NN, F1, F2) A

searchiF»).
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search{Frontier) is true if there is a path from one
element of thd-rontier to a goal node.

IS_goal(N) is true if N is a goal node.
neighborgN, NN) meand\N is list of neighbors oN.

selectN, Fg, F1) meanaN € Fg andF1 = Fg — {N}.
Fails if Fg Is empty.

e add to frontier(NN, F1, F2) means thaF, = F; U NN.

selectandadd to frontier define the search strategy.

neighborsdefines the graph

IS_goal defines what is a solution.
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