Chapter 4: Searching

- Lecture 1 Searching. Graphs. Generic search engine.
- Lecture 2 Blind search strategies.
- Lecture 3 Heuristic search, including A^* .
- Lecture 4 Pruning the search space, direction of search, iterative deepening, dynamic programming.
- Lecture 5 Constraint satisfaction problems.
- Lecture 6 Consistency algorithms, hill climbing, randomized algorithms.

Heuristic Search

Previous methods do not take into account the goal until they are at a goal node.

Often there is extra knowledge that can be used to guide the search: heuristics.

We use h(n) as an estimate of the distance from node n to a goal node.

h(n) is an underestimate if it is less than or equal to the actual cost of the shortest path from node n to a goal.

h(n) uses only readily obtainable information about a node.

Best-first Search

- Idea: always choose the node on the frontier with the smallest *h*-value.
- It treats the frontier as a priority queue ordered by *h*.
- It uses space exponential in path length.
- It isn't guaranteed to find a solution, even if one exists.
 It doesn't always find the shortest path.

Best-first search

The – naive – way to implement Best-first search

- Select(Node, [Node | Frontier], Frontier).
- add_to_frontier (Neighbors, Frontier₁, Frontier₃) ← append (Frontier₁, Neighbors, Frontier₂) ∧ sort_by_h (Frontier₂, Frontier₃)

A better way:

implement the frontier as a heap, instead as implementing it as a queue.

 \rightarrow time complexity for *add_to_frontier* is *log(n)* instead of *n*.

Best first search (Rol	oot doma	uin)
Frontier	Node	Neighbors
o103	o103	ts, I2d3, o109
I2d3[17], ts [29], o109 [29]	l2d3	l2d1, l2d4
I2d1[13], I2d4[22], ts [29], o109 [29]	l2d1	13d2, 12d2
I3d2[10], I2d2[19], I2d4[22], ts [29], o109 [29]	l3d2	I3d1, I3d3
I3d1[8], I3d3[16], I2d2[19], I2d4[22],	l3d1	I3d3
I3d3 [16] I3d3[16], I2d2[19], I2d4[22],	l3d3	_
I2d2[19], I2d4[22], ts [29], o109 [29]	l2d2	I2d4
I2d4[22], I2d4[22], ts [29], o109 [29]	l2d4	o109
o109 [29] ts [29], o109 [29]	o109	o111, o119
o119 [13] ts [29], o109 [29], o111 [33]	o119	storage, o123

Best first search (Robot c	lomain,	cont'd)
Frontier	Node	Neighbors
0119 [13], ts [29], o109 [29], o111 [33]	o119	storage, o123
0123 [4], st. [12], ts [29],o109 [29],o111 [33]	o123	r123, o125
r123 <i>[0]</i> , o125 <i>[8]</i> st. <i>[12],</i> ts <i>[29],</i>	r123	is goal

Heuristic Depth-first Search

It's a way to use heuristic knowledge in depth-first search.

Idea: order the neighbors of a node (by h) before adding them to the front of the frontier.

Locally chooses which subtree to develop, but still does depth-first search. It explores all paths from the node at the head of the frontier before exploring paths from the next node.

Space is linear in path length. It isn't guaranteed to find a solution. It can get led up the garden path.

Heuristic	Depth first search	(Robot domain)

Frontier	Node	Neighbors
o103	o103	l2d3, o109, ts
l2d3, o109, ts	l2d3	l2d1, l2d4
I2d1, I2d4, o109, ts	l2d1	13d2, 12d2
I3d2, I2d2, I2d4, o109, ts	13d2	l3d1, l3d3
I3d1, I3d3, I2d2, I2d4, o109, ts	l3d1	l3d3
I3d3, I3d3, I2d2, I2d4, o109, ts	I3d3	_
I3d3, I2d2, I2d4, o109, ts	l3d3	_
I2d2, I2d4, o109, ts	l2d2	l2d4
I2d4, I2d4, o109, ts	I2d4	0119, 0111

Depth first search (Robot domain / cont'd)							
Frontier	Node	Neighbors					
I2d4, I2d4, o109, ts	l2d4	0119, 0111					
o119, o111, l2d4, o109, ts	o119	o123, storage					
o123, st., o111, l2d4, o109, ts	o123	r123, o125					
<mark>r123,</mark> o125, st., o111, …	r123	is goal					

A* Search

- A^* search takes the path to a node and heuristic value into account.
- Let g(n) be the cost of the path found to node n.
- Let h(n) be the estimate of the cost from n to a goal.

Let f(n) = g(n) + h(n). It is an estimate of a path from the start to a goal via *n*.

$$\underbrace{\underbrace{start \xrightarrow{actual} n \xrightarrow{estimate} goal}}_{g(n)} \underbrace{f(n)}^{estimate}$$

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998

A* Search Algorithm

- A^* is a mix of lowest-cost-first and best-first search.
- It treats the frontier as a priority queue ordered by f(n).
- It always chooses the node on the frontier with the lowest estimated distance from the start to a goal node constrained to go via that node.

	A* S	earc	h (Ro	obot do	omain)
Frontier	g(n)	h(n)	f(n)	node	neighbors
<mark>0113</mark>				o113	I2d3, o109, ts
l2d3	4	17	21	I2d3	l2d1 [5], l2d4 [10]
ts	12	29	41		
o109	15	29	44		
I2d1	9	13	22	l2d1	I3d2 [4], I2d2 [10]
l2d4	14	22	36		
ts	12	29	41		
o109	15	29	44		
I3d2	13	10	23	13d2	I3d1 [4], I3d3 [10]
l2d4	14	22	36		
l2d2	19	19	38		
ts	12	29	41		
o109	15	29	44		

A* Search (Robot domain / cont'd 1)								
Frontier	g(n)	h(n)	f(n)	node	neighbors			
I3d2	13	10	23	I3d2	I3d1 [4], I3d3 [10]			
I3d1	17	8	25	I3d1	I3d3 [11]			
I2d4	14	22	36					
l2d2	19	19	38					
I3d3	23	16	39					
ts	12	29	41					
o109	15	29	44					
12d4	14	22	36	I2d4	o109 [6]			
l2d2	19	19	38					
I3d3	23	16	39					
ts	12	29	41					
l3d3	28	16	44					
o109	15	29	44					

A* Search (Robot domain / cont'd 2)							
Frontier	g(n)	h(n)	f(n)	node	neighbors		
l2d4	14	22	36	l2d4	o109 [6]		
l2d2	19	19	38	12d2	l2d4 [5]		
I3d3	23	16	39				
ts	12	29	41				
I3d3	28	16	44				
o109	15	29	44				
o109	20	29	49				
I3d3	23	16	39	I3d3	l2d2 [4]		
ts	12	29	41				
I3d3	28	16	44				
o109	15	29	44				
l2d4	24	22	46				
o109	20	29	49				

A	* Sear	ch (f	Robo	ot don	nain / cont'd 3)
Frontier	g(n)	h(n)	f(n)	node	neighbors
3d3	23	16	39	I3d3	l2d2 [4]
ts	12	29	41	ts	mail [5]
3d3	28	16	44		
o109	15	29	44		
2d2	27	19	46		
2d4	24	22	46		
o109	20	29	49		
3d3	28	16	44	I3d3	l2d2 [4]
o109	15	29	44		
2d2	27	19	46		
2d4	24	22	46		
o109	20	29	49		
mail	17	35	52		

A* Search (Robot domain / cont'd 4)							
Frontier	g(n)	h(n)	f(n)	node	neighbors		
l3d3	28	16	44	l3d3	l2d2 [4]		
o109	15	29	44	0109	o119 [21], o111[5]		
l2d2	27	19	46				
l2d4	24	22	46				
o109	20	29	49				
l2d2	32	19	51				
mail	17	35	52				
l2d2	27	19	46	12d2	l2d4 [5]		
l2d4	24	22	46				
o119	36	13	49				
o109	20	29	49				
l2d2	32	19	51				
mail	17	35	52				
o111	20	33	53				

Frontierg(n)h(n)f(n)nodeneighborsI2d2271946I2d2I2d4 [5]I2d4242246I2d4o109 [6]
I2d2271946I2d2I2d4 [5]I2d4242246I2d4o109 [6]
I2d4 24 22 46 I2d4 o109 [6]
o119 <u>36 13</u> 49
o109 20 29 49
I2d2 32 19 51
mail 17 <u>35</u> 52
o111 20 33 53
12d4 32 22 54
o119
o109 20 29 49
I2d2 32 19 51
mail 17 35 52
I2d4 <u>30</u> 22 52
o111 20 33 53
12d4 <u>32</u> 22 54

A* Search (Robot domain / cont'd 6)								
Frontier	a(n)	h(n)	f(n)	node	neighbors			
0119	<u> </u>	13	49	0119	o123 [10] stor [8]			
0109	20	29	49	0109	0119 [21], 0111[5]			
0123	46	4	50					
l2d2	32	19	51					
mail	17	35	52					
l2d4	30	22	52					
o111	20	33	53					
l2d4	32	22	54					
stor	44	12	56					

A *	* Search (Robot domain / cont'd 7)						
Frontier	g(n)	h(n)	f(n)	node	neighbors		
o109	20	29	49	o109	o119 <mark>[21]</mark> , o111[5]		

o109	20	29	49	o109	o119 <mark>[21]</mark> , o111 <mark>[5]</mark>
o123	46	4	50	o123	r123 [4], o125 [5]
l2d2	32	19	51		
mail	17	35	52		
l2d4	30	22	52		
o111	20	33	53		
o119	41	13	54		
l2d4	32	22	54		
stor	44	12	56		
o111	25	33	58		
r123	<u>50</u>	0	50		
l2d2	32	19	51		
mail	17	35	52		

Admissibility of A^*

If there is a solution, A^* always finds an optimal solution —the first path to a goal selected— if

- the branching factor is finite
- arc costs are bounded above zero (there is some ε > 0 such that all of the arc costs are greater than ε), and
- *h*(*n*) is an underestimate of the length of the shortest path from *n* to a goal node.

Why is A^* admissible?

- The *f*-value for any node on an optimal solution path is less than or equal to the *f*-value of an optimal solution. (As *h* is an underestimate).
- The search never selects a node with a higher *f*-value than the *f*-value of an optimal solution. A non-optimal solution has a higher *f* value — so it will never be selected.
- It halts, as the minimum *g*-value on the frontier keeps increasing, and will eventually exceed any finite number.

Exercise B : To be discussed in Lecture 4.4

- Why is the underestimation property of *h(n)* necessary for admissibility?
 What unwanted behavior could happen, if *h(n)* overestimates the cost to reach a goal?
- 2. Proof the admissibility property of A*.