
Computational Intelligence Chapter 4, Lecture 6, Page 1

Hill Climbing

Many search spaces are too big for systematic search.

A useful method in practice for some consistency and

optimization problems ishill climbing:

➤ Assume a heuristic value for each assignment of values

to all variables.

➤ Maintain an assignment of a value to each variable.

➤ Select a “neighbor” of the current assignment that

improves the heuristic value to be the next current

assignment.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 2

Selecting Neighbors in Hill Climbing

➤ When the domains are small or unordered, the neighbors

of a node correspond to choosing another value for one

of the variables.

➤ When the domains are large and ordered, the neighbors of

a node are the adjacent values for one of the dimensions.

➤ If the domains are continuous, you can use

Gradient ascent:change each variable proportional to

the gradient of the heuristic function in that direction.

The value of variableXi goes fromvi to vi + η ∂h
∂Xi

.

Gradient descent:go downhill;vi becomesvi − η ∂h
∂Xi

.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Knowledge Based Systems
�

PROLOG Program for Hill Climbing

hill_climb(N, S) is true if hill climbing from node N results in
local maxima S:

hill_climb(N, N) <- neighbors(N, NN) ∧∧∧∧ best (N, NN, N).

hill_climb(N, S) <- neighbors(N, NN) ∧∧∧∧ best (N, NN, M) ∧∧∧∧
M >k N ∧∧∧∧ hill_climb(M, S).

M >k N is true if heuristic value of M is greater than
heuristic value of N.

best(N, L, M) is true if M is the maximal h-value node
which is either N or an element of list L:

best(N, [], N).

best(N, [M|R], B) <- N >k M ∧∧∧∧ best (N, R, B).

best(N, [M|R], B) <- N <k M ∧∧∧∧ best (M, R, B).

Computational Intelligence Chapter 4, Lecture 6, Page 3

Problems with Hill Climbing

Foothills local maxima

that are not global

maxima

Plateaus heuristic values

are uninformative

Ridge foothill where

n-step lookahead

might help

Ignorance of the peak

Ridge

Foothill

Plateau

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 4

Randomized Algorithms

➤ Consider two methods to find a maximum value:

➣ Hill climbing, starting from some position, keep

moving uphill & report maximum value found

➣ Pick values at random & report maximum value found

➤ Which do you expect to work better to find a maximum?

➤ Can a mix work better?

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 5

Randomized Hill Climbing

As well as uphill steps we can allow for:

➤ Random steps:move to a random neighbor.

➤ Random restart:reassign random values to all variables.

Which is more expensive computationally?

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 6

1-Dimensional Ordered Examples

Two 1-dimensional search spaces; step right or left:

➤ Which method would most easily find the maximum?

➤ What happens in hundreds or thousands of dimensions?

➤ What if different parts of the search space have different

structure?

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 7

Stochastic Local Search for CSPs

➤ Goal is to find an assignment with zero unsatisfied

relations.

➤ Heuristic function: the number of unsatisfied relations.

➤ We want an assignment with minimum heuristic value.

➤ Stochastic local search is a mix of:

➣ Greedy descent: move to a lowest neighbor

➣ Random walk: taking some random steps

➣ Random restart: reassigning values to all variables

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 8

Greedy Descent

➤ It may be too expensive to find the variable-value pair

that minimizes the heuristic function at every step.

➤ An alternative is:

➣ Select a variable that participates in the most number

of conflicts.

➣ Choose a (different) value for that variable that

resolves the most conflicts.

The alternative is easier to compute even if it doesn’t always

maximally reduce the number of conflicts.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 9

Random Walk
You can add randomness:

➤ When choosing the best variable-value pair, randomly
sometimes choose a random variable-value pair.

➤ When selecting a variable then a value:

➣ Sometimes choose a random variable.

➣ Sometimes choose, at random, a variable that

participates in a conflict (a red node).

➣ Sometimes choose a random variable.

➤ Sometimes choose the best value and sometimes choose

a random value.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 10

Comparing Stochastic Algorithms

➤ How can you compare three algorithms when

➣ one solves the problem 30% of the time very quickly

but doesn’t halt for the other 70% of the cases

➣ one solves 60% of the cases reasonably quickly but

doesn’t solve the rest

➣ one solves the problem in 100% of the cases, but

slowly?

➤ Summary statistics, such as mean run time, median run

time, and mode run time don’t make much sense.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 11

Runtime Distribution
➤ Plots runtime (or number of steps) and the proportion (or

number) of the runs that are solved within that runtime.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 12

Variant: Simulated Annealing

➤ Pick a variable at random and a new value at random.

➤ If it is an improvement, adopt it.

➤ If it isn’t an improvement, adopt it probabilistically

depending on a temperature parameter,T .

➣ With current noden and proposed noden′ we move to

n′ with probabilitye(h(n′)−h(n))/T

➤ Temperature can be reduced.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 13

Tabu lists

➤ To prevent cycling we can maintain atabu list of thek

last nodes visited.

➤ Don’t allow a node that is already on the tabu list.

➤ If k = 1, we don’t allow a node to the same value.

➤ We can implement it more efficiently than as a list of

complete nodes.

➤ It can be expensive ifk is large.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 14

Parallel Search

➤ Idea: maintaink nodes instead of one.

➤ At every stage, update each node.

➤ Whenever one node is a solution, it can be reported.

➤ Like k restarts, but usesk times the minimum number of

steps.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 15

Beam Search

➤ Like parallel search, withk nodes, but you choose thek

best out of all of the neighbors.

➤ Whenk = 1, it is hill climbing.

➤ Whenk = ∞, it is breadth-first search.

➤ The value ofk lets us limit space and parallelism.

➤ Randomness can also be added.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 16

Stochastic Beam Search

➤ Like beam search, but you probabilistically choose thek

nodes at the next generation.

➤ The probability that a neighbor is chosen is proportional

to the heuristic value.

➤ This maintains diversity amongst the nodes.

➤ The heuristic value reflects the fitness of the node.

➤ Like asexual reproduction: each node gives its mutations

and the fittest ones survive.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 17

Genetic Algorithms

➤ Like stochastic beam search, but pairs are nodes are

combined to create the offspring:

➤ For each generation:

➣ Randomly choose pairs of nodes where the fittest

individuals are more likely to be chosen.

➣ For each pair, perform a cross-over: form two

offspring each taking different parts of their parents:

➣ Mutate some values

➤ Report best node found.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 18

Crossover
➤ Given two nodes:

X1 = a1, X2 = a2, . . . , Xm = am

X1 = b1, X2 = b2, . . . , Xm = bm

➤ Selecti at random.

➤ Form two offspring:

X1 = a1, . . . , Xi = ai, Xi+1 = bi+1, . . . , Xm = bm

X1 = b1, . . . , Xi = bi, Xi+1 = ai+1, . . . , Xm = am

➤ Note that this depends on an ordering of the variables.

➤ Many variations are possible.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 4, Lecture 6, Page 19

Example: Crossword Puzzle

1 2

3

4

Words:

ant, big, bus, car, has

book, buys, hold,

lane, year

beast, ginger, search,

symbol, syntax

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

