Situation Calculus

- State-based representation where the states are denoted by terms.
$>$ A situation is a term that denotes a state.
- There are two ways to refer to states:
$>$ init denotes the initial state
$>d o(A, S)$ denotes the state resulting from doing action A in state S, if it is possible to do A in S.

A situation also encodes how to get to the state it denotes.

Example Situations

$>$ init
$>d o($ move(rob, o109, o103), init $)$
$>$ do(move (rob,o103, mail),

$$
\begin{aligned}
& \text { do(move(rob, o109, o103), } \\
& \text { init)). }
\end{aligned}
$$

$>\operatorname{do}($ pickup $(r o b, k 1)$, do(move(rob, o103, mail), do(move(rob, o109, o103), init))).

Using the Situation Terms

$>$ Add an extra term to each dynamic predicate indicating the situation.
> Example Atoms:

$$
\begin{aligned}
& \text { at }(r o b, o 109, \text { init }) \\
& \operatorname{at}(r o b, o 103, \operatorname{do}(\operatorname{move}(r o b, o 109, o 103), \text { init })) \\
& \operatorname{at}(k 1, \text { mail, do(move }(r o b, o 109, o 103), \text { init }))
\end{aligned}
$$

Axiomatizing using the Situation Calculus

> You specify what is true in the initial state using axioms with init as the situation parameter.
> Primitive relations are axiomatized by specifying what is true in situation $d o(A, S)$ in terms of what holds in situation S.
> Derived relations are defined using clauses with a free variable in the situation argument.
> Static relations are defined without reference to the situation.

Initial Situation

sitting_at(rob, o109, init).
sitting_at(parcel, storage, init).
sitting_at (k1, mail, init).

Derived Relations

$\operatorname{adjacent}\left(P_{1}, P_{2}, S\right) \leftarrow$
between $\left(\right.$ Door $\left., P_{1}, P_{2}\right) \wedge$
unlocked(Door, S).
adjacent(lab2, o109, S).

When are actions possible?

$\operatorname{poss}(A, S)$ is true if action A is possible in situation S.
poss(putdown $(A g, O b j), S) \leftarrow$ carrying(Ag, Obj, S).
$\operatorname{poss}\left(\right.$ move $\left(A g\right.$, Pos $_{1}$, Pos $\left.\left._{2}\right), S\right) \leftarrow$ autonomous $(A g) \wedge$ $\operatorname{adjacent}\left(\right.$ Pos $_{1}$, Pos $\left._{2}, S\right) \wedge$ sitting_at(Ag, Pos $\left._{1}, S\right)$.

Axiomatizing Primitive Relations

Example: Unlocking the door makes the door unlocked:
unlocked (Door, do(unlock (Ag, Door $), S)) \leftarrow$ poss(unlock(Ag, Door), S).

Frame Axiom: No actions lock the door:
unlocked $(\operatorname{Door}, \operatorname{do}(A, S)) \leftarrow$
unlocked (Door, S) ^ $\operatorname{poss}(A, S)$.

Example: axiomatizing carried

Picking up an object causes it to be carried:

$$
\begin{aligned}
& \text { carrying }(A g, O b j, \operatorname{do}(\text { pickup }(A g, O b j), S)) \leftarrow \\
& \quad \operatorname{poss}(\operatorname{pickup}(A g, O b j), S)
\end{aligned}
$$

Frame Axiom: The object is being carried if it was being carried before unless the action was to put down the object:

$$
\begin{aligned}
& \operatorname{carrying}(A g, O b j, \operatorname{do}(A, S)) \leftarrow \\
& \quad \operatorname{carrying}(A g, O b j, S) \wedge \\
& \operatorname{poss}(A, S) \wedge \\
& A \neq \operatorname{putdown}(A g, O b j)
\end{aligned}
$$

Example: sitting_at

An object is sitting at a location if:
$>$ it moved to that location:

> sitting_at $\left(O b j, \operatorname{Pos}, \operatorname{do}\left(\right.\right.$ move $\left.\left.\left(O b j, \operatorname{Pos}_{0}, \operatorname{Pos}\right), S\right)\right)$ $\quad \operatorname{poss}\left(\operatorname{move}\left(O b j, \operatorname{Pos}_{0}, \operatorname{Pos}\right)\right.$.
$>$ it was put down at that location:
sitting_at(Obj, Pos,do(putdown $(A g, O b j), S)) \leftarrow$

$$
\begin{aligned}
& \operatorname{poss}(\text { putdown }(A g, O b j), S) \wedge \\
& \operatorname{at}(A g, \operatorname{Pos}, S) .
\end{aligned}
$$

$>$ it was at that location before and didn't move and wasn't picked up.

More General Frame Axioms

The only actions that undo sitting_at for object $O b j$ is when
Obj moves somewhere or when someone is picking up $O b j$.

$$
\begin{aligned}
& \operatorname{sitting_ at}(O b j, \operatorname{Pos}, \operatorname{do}(A, S)) \leftarrow \\
& \quad \operatorname{poss}(A, S) \wedge \\
& \quad \operatorname{sitting_ at}(\operatorname{Obj}, \operatorname{Pos}, S) \wedge \\
& \quad \forall \operatorname{Pos}_{1} A \neq \operatorname{move}\left(O b j, \operatorname{Pos}, \operatorname{Pos}_{1}\right) \wedge \\
& \forall A g A \neq \operatorname{pickup}(A g, O b j)
\end{aligned}
$$

The last line is equivalent to:

$$
\sim \exists A g A=\operatorname{pickup}(A g, O b j)
$$

which can be implemented as

sitting_at $(\operatorname{Obj}, \operatorname{Pos}, d o(A, S)) \leftarrow$

$$
\begin{aligned}
& \cdots \wedge \cdots \wedge \cdots \wedge \\
& \sim \text { is_pickup_action }(A, O b j) .
\end{aligned}
$$

with the clause:
is_pickup_action $(A, O b j) \leftarrow$

$$
A=\operatorname{pickup}(A g, O b j)
$$

which is equivalent to:
is_pickup_action(pickup $(A g, O b j), O b j)$.

STRIPS and the Situation Calculus

Anything that can be stated in STRIPS can be stated in the situation calculus.
> The situation calculus is more powerful. For example, the "drop everything" action.

To axiomatize STRIPS in the situation calculus, we can use holds (C, S) to mean that C is true in situation S.
$\operatorname{holds}(C, d o(A, W)) \leftarrow$
preconditions $(A, P) \wedge$ $\operatorname{holdsall}(P, W) \wedge$
add_list $(A, A L) \wedge$
member $(C, A L)$.
$\operatorname{holds}(C, d o(A, W)) \leftarrow$
preconditions $(A, P) \wedge$ holdsall $(P, W) \wedge$ delete_list $(A, D L) \wedge$
$\operatorname{notin}(C, D L) \wedge$
holds($C, W)$.

The preconditions of of A all hold in W.
C is on the addlist of A.

The preconditions of of A all hold in W.
C isn't on the deletelist of A.
C held before A.

