STRIPS Planner

- Divide and conquer: to create a plan to achieve a conjunction of goals, create a plan to achieve one goal, and then create a plan to achieve the rest of the goals.
- To achieve a list of goals:
 - > choose one of them to achieve.
 - > If it is not already achieved
 - > choose an action that makes the goal true
 - > achieve the preconditions of the action
 - > carry out the action
 - > achieve the rest of the goals.

STRIPS Planner Code

% $achieve_all(Gs, W_1, W_2)$ is true if W_2 is the world resulting % from achieving every element of the list Gs of goals from % the world W_1 .

```
achieve_all([], W_0, W_0).

achieve_all(Goals, W_0, W_2) \leftarrow

remove(G, Goals, Rem_Gs) \land

achieve(G, W_0, W_1) \land

achieve_all(Rem_Gs, W_1, W_2).
```


% $achieve(G, W_0, W_1)$ is true if W_1 is the resulting world % after achieving goal G from the world W_0 .

after achieving goal
$$G$$
 from the world w_0 .

$$achieve(G, W, W) \leftarrow$$

holds(G, W). $achieve(G, W_0, W_1) \leftarrow$

$$clause(G, B) \land$$

 $achieve_all(B, W_0, W_1).$ $achieve(G, W_0, do(Action, W_1)) \leftarrow$

achieves(Action, G)
$$\land$$

preconditions(Action, Pre) \land
achieve_all(Pre, W₀, W₁).

Undoing Achieved Goals

Example: consider trying to achieve

[carrying(rob, parcel), sitting_at(rob, lab2)]

Example: consider trying to achieve

[sitting_at(rob, lab2), carrying(rob, parcel)]

- The STRIPS algorithm, as presented, is unsound.
- Achieving one subgoal may undo already achieved subgoals.

Fixing the STRIPS Algorithm

Two ideas to make STRIPS sound:

- Protect subgoals so that, once achieved, until they are needed, they cannot be undone. Let *remove* return different choices.
- Reachieve subgoals that have been undone.
 - > Protecting subgoals makes STRIPS incomplete.
 - Reachieving subgoals finds longer plans than necessary.

Does protecting always work?

Example Suppose the robot can only carry one item at a time. Consider the goal:

 $sitting_at(rob, lab2) \land carrying(rob, parcel)$

➤ We cannot consider the subgoals in isolation!

