
Computational Intelligence Slides Online Click on a highlighted lecture

Chapter 11: Learning

➤ Lecture 1 Learning Issues.

➤ Lecture 2 Decision-tree learning.

➤ Lecture 3 Neural network learning.

➤ Lecture 4 Case-Based reasoning.

➤ Lecture 5 Learning under uncertainty.

☞ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002 ☞ ☞
1

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 1, Page 1

Learning

Learning is the ability to improve one’s behavior based on

experience.

➤ The range of behaviors is expanded: the agent can do

more.

➤ The accuracy on tasks is improved: the agent can do

things better.

➤ The speed is improved: the agent can do things faster.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

2

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 1, Page 2

Components of a learning problem

The following components are part of any learning problem:

➤ task The behavior or task that’s being improved.

For example: classification, acting in an environment

➤ data The experiences that are being used to improve

performance in the task.

➤ measure of improvementHow can the improvement be

measured?

For example: increasing accuracy in prediction, new

skills that were not present initially, improved speed.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

3

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 1, Page 3

Learning task

experiences/
data

background knowledge/
bias

problem/
task

answer/
performance

Learning agent

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

4

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 1, Page 4

Learning architecture
experiences/

data

background knowledge/
bias

problem/
task

answer/
performance

induction
procedure

reasoning
procedure

internal
representation

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

5

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 1, Page 5

Choosing a representation

➤ The richer the representation, the more useful it is for

subsequent problem solving.

➤ The richer the representation, the more difficult it is to

learn.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

6

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 1, Page 6

Common Learning Tasks

➤ Supervised classificationGiven a set of pre-classified

training examples, classify a new instance.

➤ Unsupervised learningFind natural classes for

examples.

➤ Reinforcement learningDetermine what to do based on

rewards and punishments.

➤ Analytic learning Reason faster using experience.

➤ Inductive logic programmingBuild richer models in

terms of logic programs.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

7

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 1, Page 7

Example Classification Data

Action Author Thread Length Where

e1 skips known new long home

e2 reads unknown new short work

e3 skips unknown old long work

e4 skips known old long home

e5 reads known new short home

e6 skips known old long work

We want to classify new examples on propertyActionbased

on the examples’Author, Thread, Length, andWhere.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

8

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 1, Page 8

Feedback

Learning tasks can be characterized by the feedback given to

the learner.

➤ Supervised learningWhat has to be learned is specified

for each example.

➤ Unsupervised learningNo classifications are given; the

learner has to discover categories and regularities in the

data.

➤ Reinforcement learningFeedback occurs after a

sequence of actions.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

9

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 1, Page 9

Measuring Success

➤ The measure of success is not how well the agent

performs on the training examples, but how well the

agent performs for new examples.

➤ Consider two agents:

➣ P claims the negative examples seen are the only

negative examples. Every other instance is positive.

➣ N claims the positive examples seen are the only

positive examples. Every other instance is negative.

➤ Both agents correctly classify every training example,

but disagree on every other example.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

10

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 1, Page 10

Bias

➤ The tendency to prefer one hypothesis over another is

called a bias.

➤ Saying a hypothesis is better thanN’s or P’s hypothesis

isn’t something that’s obtained from the data.

➤ To have any inductive process make predictions on

unseen data, you need a bias.

➤ What constitutes a good bias is an empirical question

about which biases work best in practice.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

11

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 1, Page 11

Learning as search

➤ Given a representation and a bias, the problem of

learning can be reduced to one of search.

➤ Learning is search through the space of possible

representations looking for the representation or

representations that best fits the data, given the bias.

➤ These search spaces are typically prohibitively large for

systematic search. Usehill climbing.

➤ A learning algorithm is made of a search space, an

evaluation function, and a search method.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

12

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 1, Page 12

Noise

➤ Data isn’t perfect:

➣ some of the attributes are assigned the wrong value

➣ the attributes given are inadequate to predict the

classification

➣ there are examples with missing attributes

➤ overfitting occurs when a distinction appears in the

data, but doesn’t appear in the unseen examples. This

occurs because of random correlations in the training set.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

13

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 1, Page 13

Characterizations of Learning

➤ Find the best representation given the data.

➤ Delineate the class of consistent representations given

the data.

➤ Find a probability distribution of the representations

given the data.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

14

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 2, Page 1

Learning Decision Trees

➤ Representation is a decision tree.

➤ Bias is towards simple decision trees.

➤ Search through the space of decision trees, from simple

decision trees to more complex ones.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

15

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 2, Page 2

Decision trees

A decision treeis a tree where:

➤ The nonleaf nodes are labeled with attributes.

➤ The arcs out of a node labeled with attributeA are labeled

with each of the possible values of the attributeA.

➤ The leaves of the tree are labeled with classifications.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

16

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 2, Page 3

Example Decision Tree

length

long short

thread

new old

skips

reads author

known unknown

reads skips

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

17

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 2, Page 4

Equivalent Logic Program

prop(Obj, user_action, skips) ←
prop(Obj, length, long).

prop(Obj, user_action, reads) ←
prop(Obj, length, short)∧prop(Obj, thread, new).

prop(Obj, user_action, reads) ←
prop(Obj, length, short)∧prop(Obj, thread, old)∧
prop(Obj, author, known).

prop(Obj, user_action, skips) ←
prop(Obj, length, short)∧prop(Obj, thread, old)∧
prop(Obj, author, unknown).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

18

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 2, Page 5

Issues in decision-tree learning

➤ Given some data, which decision tree should be

generated? A decision tree can represent any discrete

function of the inputs.

➤ You need abias. Example, prefer the smallest tree.

Least depth? Fewest nodes? Which trees are the best

predictors of unseen data?

➤ How should you go about building a decision tree? The

space of decision trees is too big for systematic search

for the smallest decision tree.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

19

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 2, Page 6

Searching for a Good Decision Tree

➤ The input is a target attribute (theGoal), a set of

examples, and a set of attributes.

➤ Stop if all examples have the same classification.

➤ Otherwise, choose an attribute to split on,

➣ for each value of this attribute, build a subtree for

those examples with this attribute value.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

20

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 2, Page 7

Decision tree learning: Boolean attributes

dtlearn(Goal, Examples, Attributes, DT) givenExamples%%

andAttributesconstruct decision treeDT for Goal.%%%%%%%

dtlearn(Goal, Exs, Atts, Val) ←
all_examples_agree(Goal, Exs, Val).

dtlearn(Goal, Exs, Atts, if (Cond, YT, NT)) ←
examples_disagree(Goal, Exs) ∧
select_split(Goal, Exs, Atts, Cond, Rem_Atts) ∧
split(Exs, Cond, Yes, No) ∧
dtlearn(Goal, Yes, Rem_Atts, YT) ∧
dtlearn(Goal, No, Rem_Atts, NT).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

21

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 2, Page 8

Example: possible splits

length

long short

skips 7
reads 0

skips 2
reads 9

skips 9
reads 9

thread

new old

skips 3
reads 7

skips 6
reads 2

skips 9
reads 9

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

22

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 2, Page 9

Using this algorithm in practice

➤ Attributes can have more than two values. This

complicates the trees.

➤ This assumes attributes are adequate to represent the

concept. You can return probabilities at leaves.

➤ Which attribute to select to split on isn’t defined. You

want to choose the attribute that results in the smallest

tree. Often we use information theory as an evaluation

function in hill climbing.

➤ Overfitting is a problem.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

23

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 2, Page 10

Handling Overfitting

➤ This algorithm gets into trouble overfitting the data. This

occurs with noise and correlations in the training set that

are not reflected in the data as a whole.

➤ To handle overfitting:

➣ You can restrict the splitting, so that you split only

when the split is useful.

➣ You can allow unrestricted splitting and prune the

resulting tree where it makes unwarranted

distinctions.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

24

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 1

Neural Networks

➤ These representations are inspired by neurons and their

connections in the brain.

➤ Artificial neurons, orunits, have inputs, and an output.

The output can be connected to the inputs of other units.

➤ The output of a unit is a parameterized non-linear

function of its inputs.

➤ Learning occurs by adjusting parameters to fit data.

➤ Neural networks can represent an approximation to any

function.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

25

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 2

Why Neural Networks?

➤ As part of neuroscience, in order to understand real

neural systems, researchers are simulating the neural

systems of simple animals such as worms.

➤ It seems reasonable to try to build the functionality of the

brain via the mechanism of the brain (suitably

abstracted).

➤ The brain inspires new ways to think about computation.

➤ Neural networks provide a different measure of

simplicity as a learning bias.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

26

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 3

Feed-forward neural networks

➤ Feed-forward neural networks are the most common

models.

➤ These are directed acyclic graphs:

inputs
hidden
units

output
units

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

27

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 4

The Units
A unit with k inputs is like the parameterized logic program:

prop(Obj, output, V) ←
prop(Obj, in1, I1) ∧
prop(Obj, in2, I2) ∧
· · ·
prop(Obj, ink, Ik) ∧
V is f (w0 + w1 × I1 + w2 × I2 + · · · + wk × Ik).

➤ Ij are real-valued inputs.
➤ wj are adjustable real parameters.
➤ f is an activation function.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

28

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 5

Activation function

A typical activation function is thesigmoid function:

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-10 -5 0 5 10

1

1+ e x

f (x) = 1

1 + e−x
f ′(x) = f (x)(1 − f (x))

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

29

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 6

Neural Network for the news example

inputs hidden
units

output
units

known

new

short

reads

home

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

30

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 7

Axiomatizing the Network

➤ The values of the attributes are real numbers.

➤ Thirteen parametersw0, . . . , w12 are real numbers.

➤ The attributesh1 andh2 correspond to the values of

hidden units.

➤ There are 13 real numbers to be learned. The hypothesis

space is thus a 13-dimensional real space.

➤ Each point in this 13-dimensional space corresponds to a

particular logic program that predicts a value forreads

givenknown, new, short, andhome.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

31

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 8

predicted_prop(Obj, reads, V) ←
prop(Obj, h1, I1) ∧ prop(Obj, h2, I2) ∧
V is f (w0 + w1×I1 + w2×I2).

prop(Obj, h1, V) ←
prop(Obj, known, I1) ∧ prop(Obj, new, I2) ∧
prop(Obj, short, I3) ∧ prop(Obj, home, I4) ∧
V is f (w3 + w4×I1 + w5×I2 + w6×I3 + w7×I4).

prop(Obj, h2, V) ←
prop(Obj, known, I1) ∧ prop(Obj, new, I2) ∧
prop(Obj, short, I3) ∧ prop(Obj, home, I4) ∧
V is f (w8 + w9×I1 + w10×I2 + w11×I3 + w12×I4).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

32

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 9

Prediction Error

➤ For particular values for the parametersw = w0, . . . wm

and a setE of examples, thesum-of-squares erroris

ErrorE(w) =
∑
e∈E

(pw
e − oe)

2,

➣ pw
e is the predicted output by a neural network with

parameter values given byw for examplee

➣ oe is the observed output for examplee.

➤ The aim of neural network learning is, given a set of

examples, to find parameter settings that minimize the

error.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

33

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 10

Neural Network Learning

➤ Aim of neural network learning: given a set of examples,

find parameter settings that minimize the error.

➤ Back-propagation learningis gradient descent search

through the parameter space to minimize the

sum-of-squares error.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

34

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 11

Backpropagation Learning

➤ Inputs:

➣ A network, including all units and their connections

➣ Stopping Criteria

➣ Learning Rate (constant of proportionality of gradient

descent search)

➣ Initial values for the parameters

➣ A set of classified training data

➤ Output: Updated values for the parameters

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

35

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 12

Backpropagation Learning Algorithm

➤ Repeat

➣ evaluate the network on each example given the

current parameter settings

➣ determine the derivative of the error for each

parameter

➣ change each parameter in proportion to its derivative

➤ until the stopping criteria is met

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

36

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 13

Gradient Descent for Neural Net Learning

➤ At each iteration, update parameterwi

wi ←
(

wi − η
∂error(wi)

∂wi

)

η is the learning rate

➤ You can compute partial derivative:

➣ numerically: for small1
error(wi + 1) − error(wi)

1

➣ analytically: f ′(x) = f (x)(1 − f (x)) + chain rule

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

37

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 14

Simulation of Neural Net Learning

Para- iteration 0 iteration 1 iteration 80

meter Value Deriv Value Value

w0 0.2 0.768 −0.18 −2.98

w1 0.12 0.373 −0.07 6.88

w2 0.112 0.425 −0.10 −2.10

w3 0.22 0.0262 0.21 −5.25

w4 0.23 0.0179 0.22 1.98

Error: 4.6121 4.6128 0.178

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

38

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 15

What Can a Neural Network Represent?

I1

I2 w2

w0

w1

w0 w1 w2 Logic

-15 10 10 and

-5 10 10 or

5 -10 -10 nor

Output isf (w0 + w1 × I1 + w2 × I2).

A single unit can’t representxor.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

39

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 16

Bias in neural networks and decision trees

➤ It’s easy for a neural network to represent “at least two of

I1, . . . , Ik are true”:

w0 w1 · · · wk

-15 10 · · · 10

This concept forms a large decision tree.

➤ Consider representing a conditional: “Ifc thena elseb”:

➣ Simple in a decision tree.

➣ Needs a complicated neural network to represent

(c ∧ a) ∨ (¬c ∧ b).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

40

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 3, Page 17

Neural Networks and Logic

➤ Meaning is attached to the input and output units.

➤ There is no a priori meaning associated with the hidden

units.

➤ What the hidden units actually represent is something

that’s learned.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

41

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 4, Page 1

Case-based Reasoning

➤ Idea: experiences themselves are stored. These are

called cases.

➤ Given a new example, the most appropriate case(s) in the

knowledge base are found and these are used to predict

properties of the new example.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

42

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 4, Page 2

Extremes of Case-based Reasoning

➤ The cases are simple and for each new example the agent

has seen many identical instances. Use the statistics of

the cases.

➤ The cases are simple but there are few exact matches.

Use a distance metric to find the closest cases.

➤ The cases are complex, there are no matches. You need

sophisticated reasoning to determine why an old case is

like the new case.

Examples:legal reasoning, case-based planning.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

43

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 4, Page 3

k-nearest Neighbors

➤ Need a distance metric between examples.

➤ Given a new example, find thek nearest neighbors of that

example.

➤ Predict the classification by using the mode, median, or

interpolating between the neighbors.

➤ Often wantk > 1 because there can be errors in the case

base.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

44

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 4, Page 4

Euclidean Distance

➤ Define a metric for each dimension (convert the values to

a numerical scale).

➤ The Euclidean distancebetween examplesx andy is:

d(x, y) =
√∑

A

wA(xA − yA)2

➣ xA is the numerical value of attributeA for examplex

➣ wA is a nonnegative real-valued parameter that

specifies the relative weight of attributeA.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

45

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 4, Page 5

kd-tree

➤ Like a decision tree, but examples are stored at the leaves.

➤ The aim is to build a balanced tree; so a particular

example can be found in logn time when there aren

examples.

➤ Not all leaves will be an exact match for a new example.

➤ Any exact match can be found ind = logn time

➤ All examples that miss on just one attribute can be found

in O(d2) time.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

46

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 1

Learning Under Uncertainty

➤ We want to learn models from data.

P(model|data) = P(data|model) × P(model)

P(data).

➤ The likelihood, P(data|model), is the probability that

this model would have produced this data.

➤ The prior, P(model), encodes the learning bias

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

47

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 2

Bayesian Leaning of Probabilities

➤ Suppose there are two outcomesA and¬A. We would

like to learn the probability ofA given some data.

➤ We can treat the probability ofA as a real-valued random

variable on the interval[0, 1], calledprobA.

P(probA=p|data) = P(data|probA=p) × P(probA=p)

P(data)

➤ Suppose the data is a sequence ofn A’s out of

independentm trials,

P(data|probA=p) = pn × (1 − p)m−n

➤ Uniform prior: P(probA=p) = 1 for all p ∈ [0, 1].

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

48

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 3

Posterior Probabilities for Different Data

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

n=0, m=0
n=2, m=3
n=4, m=6
n=8, m=12

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

49

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 4

MAP model

➤ The maximum a posteriori probability(MAP) model is

the model that maximizesP(model|data). That is, it

maximizes:

P(data|model) × P(model)

➤ Thus it minimizes:

(− logP(data|model)) + (− logP(model))

which is the number of bits to send the data given the

model plus the number of bits to send the model.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

50

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 5

Information theory overview

➤ A bit is a binary digit.

➤ 1 bit can distinguish 2 items

➤ k bits can distinguish 2k items

➤ n items can be distinguished using log2 n bits

➤ Can you do better?

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

51

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 6

Information and Probability
Let’s design a code to distinguish elements of{a, b, c, d} with

P(a) = 1

2
, P(b) = 1

4
, P(c) = 1

8
, P(d) = 1

8
Consider the code:

a 0 b 10 c 110 d 111

This code sometimes uses 1 bit and sometimes uses 3 bits.
On average, it uses

P(a) × 1 + P(b) × 2 + P(c) × 3 + P(d) × 3

= 1

2
+ 2

4
+ 3

8
+ 3

8
= 1

3

4
bits.

The stringaacabbda has code 00110010101110.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

52

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 7

Information Content
➤ To identify x, you need− log2 P(x) bits.

➤ If you have a distribution over a set and want to a identify
a member, you need the expected number of bits:

∑

x

−P(x) × log2 P(x).

This is the information contentor entropy of the
distribution.

➤ The expected number of bits it takes to describe a
distribution given evidencee:

I(e) =
∑

x

−P(x|e) × log2 P(x|e).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

53

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 8

Information Gain

If you have a test that can distinguish the cases whereα is

true from the cases whereα is false, theinformation gain

from this test is:

I(true) − (P(α) × I(α) + P(¬α) × I(¬α)).

➤ I(true) is the expected number of bits needed before the

test

➤ P(α) × I(α) + P(¬α) × I(¬α) is the expected number

of bits after the test.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

54

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 9

Averaging Over Models

➤ Idea: Rather than choosing the most likely model,

average over all models, weighted by their posterior

probabilities given the data.

➤ If you have observedn A’s out of m trials

➣ the most likely value (MAP) isn
m

➣ the expected value isn+1
m+2

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

55

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 10

Learning a Belief Network

➤ If you

➣ know the structure

➣ have observed all of the variables

➣ have no missing data

➤ you can learn each conditional probability separately.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

56

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 11

Learning belief network example

Model Data → Probabilities

C

E

A B

D

A B C D E

t f t t f

f t t t t

t t f t f

· · ·

P(A)

P(B)

P(E|A, B)

P(C|E)

P(D|E)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

57

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 12

Learning conditional probabilities

➤ Each conditional probability distribution can be learned

separately:

➤ For example:

P(E = t|A = t ∧ B = f)

= (#examples:E = t ∧ A = t ∧ B = f) + m1

(#examples:A = t ∧ B = f) + m

wherem1 andm reflect our prior knowledge.

➤ There is a problem when there are many parents to a node

as then there is little data for each probability estimate.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

58

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 13

Unobserved Variables

B

H

A

C

➤ What if we had only observed

values forA, B, C?

A B C

t f t

f t t

t t f

· · ·

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

59

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 14

EM Algorithm

Augmented Data Probabilities

A B C H

t f t t

f t t f

t t f t

· · ·

E-step

M-step

P(A)

P(H|A)

P(B|H)

P(C|H)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

60

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 15

EM Algorithm

➤ Repeat the following two steps:

➣ E-step give the expected number of data points for

the unobserved variables based on the given

probabilty distribution.

➣ M-step infer the (maximun likelihood) probabilities

from the data. This is the same as the full observable

case.

➤ Start either with made-up data or made-up probabilities.

➤ EM will converge to a local maxima.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

61

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 16

Example Data

B

H

A

C

A B C Count

t t t 143

t t f 329

t f t 57

t f f 271

f t t 87

f t f 66

f f t 23

f f f 24

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

62

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 17

Naive Bayesian Classifier

class

att-2 att-3 att-katt1 ...

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

63

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 18

Unsupervised Learning

➤ Given a collection of data, find natural classifications.

➤ This can be seen as the naive Bayesian classifier with the

classification unobserved.

➤ EM can be used to learn classification.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

64

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 19

Bayesian learning of decision trees

P(model|data) = P(data|model) × P(model)

P(data).

➤ A model here is a decision tree

➤ We allow for decision trees with probabilities at the

leaves

➤ A bigger decision tree can always fit the data better

➤ P(model) lets us encode a preference for smaller

decision trees.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

65

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 20

Data for decision tree learning

att1 att2 class count

t t c1 10

t t c2 3

t f c1 5

t f c2 12

f t c1 7

f t c2 14

f f c1 8

f f c2 1

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

66

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 11, Lecture 5, Page 21

Probabilities From Experts

➤ Bayes rule lets us combine expert knowledge with data

P(model|data) = P(data|model) × P(model)

P(data).

➤ The experts prior knowledge of the model (i.e.,

P(model)) can be expressed as a pair〈n, m〉 that can be

interpreted as though they had observedn A’s out of m

trials.

➤ This estimate can be combined with data.

➤ Estimates from multiple experts can be combined

together.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

67

http://www.cs.ubc.ca/spider/poole/ci.html

