
Computational Intelligence Slides Online Click on a highlighted lecture

Chapter 9: Assumption-based Reasoning

➤ Lecture 1 Assumption-based reasoning framework.

➤ Lecture 2 Default reasoning, the multiple-extension

problem, skeptical reasoning.

➤ Lecture 3 Abduction, abductibe diagnosis

➤ Lecture 4 Combining Evidential and Causal Reasoning

➤ Lecture 5 Algorithms
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Assumption-based Reasoning

Often we want our agents to make assumptions rather than

doing deduction from their knowledge. For example:

➤ In default reasoning the delivery robot may want to

assume Mary is in her office, even if it isn’t always true.

➤ In diagnosis you hypothesize what could be wrong with

a system to produce the observed symptoms.

➤ In design you hypothesize components that provably

fulfill some design goals and are feasible.
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Design and Recognition
Two different tasks use assumption-based reasoning:

➤ Design The aim is to design an artifact or plan. The

designer can select whichever design they like that

satisfies the design criteria.

➤ Recognition The aim is to find out what is true based on

observations. If there are a number of possibilities, the

recognizer can’t select the one they like best. The

underlying reality is fixed; the aim is to find out what it is.

Compare: Recognizing a disease with designing a treatment.

Designing a meeting time with determining when it is.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

3

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 9, Lecture 1, Page 3

The Assumption-based Framework

The assumption-based framework is defined in terms of two

sets of formulae:

➤ F is a set of closed formula called the facts .

These are formulae that are given as true in the world.

We assume F are Horn clauses.

➤ H is a set of formulae called the possible hypotheses or

assumables. Ground instance of the possible hypotheses

can be assumed if consistent.
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Making Assumptions

➤ A scenario of 〈F, H〉 is a set D of ground instances of

elements of H such that F ∪ D is satisfiable.

➤ An explanation of g from 〈F, H〉 is a scenario that,

together with F, implies g.

D is an explanation of g if F ∪D |= g and F ∪D �|= false.

A minimal explanation is an explanation such that no

strict subset is also an explanation.

➤ An extension of 〈F, H〉 is the set of logical

consequences of F and a maximal scenario of 〈F, H〉.
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Example

a← b ∧ c.

b← e.

b← h.

c← g.

c← f .

d ← g.

false← e ∧ d.

f ← h ∧ m.

assumable e, h, g, m, n.

➤ {e, m, n} is a scenario.

➤ {e, g, m} is not a scenario.

➤ {h, m} is an explanation for a.

➤ {e, h, m} is an explanation for a.

➤ {e, h, m, n} is a maximal scenario.

➤ {h, g, m, n} is a maximal scenario.
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Default Reasoning and Abduction

There are two strategies for using the assumption-based

framework:

➤ Default reasoning Where the truth of g is unknown and

is to be determined.

An explanation for g corresponds to an argument for g.

➤ Abduction Where g is given, and we are interested in

explaining it. g could be an observation in a recognition

task or a design goal in a design task.
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Default Reasoning

➤ When giving information, you don’t want to enumerate

all of the exceptions, even if you could think of them all.

➤ In default reasoning, you specify general knowledge and

modularly add exceptions. The general knowledge is

used for cases you don’t know are exceptional.

➤ Classical logic ismonotonic: If g logically follows from

A, it also follows from any superset ofA.

➤ Default reasoning isnonmonotonic:When you add that

something is exceptional, you can’t conclude what you

could before.
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Defaults as Assumptions

Default reasoning can be modeled using

➤ H is normality assumptions

➤ F states what follows from the assumptions

An explanation ofg gives anargumentfor g.
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Default Example

A reader of newsgroups may have a default:

“Articles about AI are generally interesting”.

H = {int_ai(X)},
whereint_ai(X) meansX is interesting if it is about AI.

With facts:

interesting(X)← about_ai(X) ∧ int_ai(X).

about_ai(art_23).

{int_ai(art_23)} is an explanation forinteresting(art_23).
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Default Example, Continued

We can have exceptions to defaults:

false← interesting(X) ∧ uninteresting(X).

Suppose article 53 is about AI but is uninteresting:

about_ai(art_53).

uninteresting(art_53).

We cannot explaininteresting(art_53) even though

everything we know aboutart_23 you also know about

art_53.
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Exceptions to defaults

int_ai

interesting

article_53

about_ai

implication

default

class 
membership

article_23

uninteresting
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Exceptions to Defaults
“Articles about formal logic are about AI.”
“Articles about formal logic are uninteresting.”
“Articles about machine learning are about AI.”

about_ai(X)← about_fl(X).

uninteresting(X)← about_fl(X).

about_ai(X)← about_ml(X).

about_fl(art_77).

about_ml(art_34).

You can’t explaininteresting(art_77).

You can explaininteresting(art_34).
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Exceptions to Defaults

int_ai

interesting

article_23

intro_question

article_99
article_34article_77

about_fl
about_ml

about_ai

implication

default

class 
membership
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Formal logic is uninteresting by default

int_ai

interesting

article_23

intro_question

article_99
article_34article_77

about_fl
about_ml

about_ai

implication

default

class 
membership

unint_fl
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Contradictory Explanations
Suppose formal logic articles aren’t interestingby default:

H = {unint_fl(X), int_ai(X)}.

The corresponding facts are:

interesting(X)← about_ai(X) ∧ int_ai(X).

about_ai(X)← about_fl(X).

uninteresting(X)← about_fl(X) ∧ unint_fl(X).

about_fl(art_77).

uninteresting(art_77) has explanation{unint_fl(art_77)}.
interesting(art_77) has explanation{int_ai(art_77)}.
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Overriding Assumptions
➤ Becauseart_77 is about formal logic, the argument

“art_77 is interesting because it is about AI” shouldn’t
be applicable.

➤ This is an instance of preference formore specific
defaults.

➤ Arguments that articles about formal logic are interesting
because they are about AI can be defeated by adding:

false← about_fl(X) ∧ int_ai(X).

This is known as acancellation rule.

➤ You can no longer explaininteresting(art_77).
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Diagram of the Default Example

int_ai

interesting

article_23

intro_question

article_99
article_34article_77

about_fl
about_ml

about_ai

implication

default

class 
membership

unint_fl
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Multiple Extension Problem

➤ What if incompatible goals can be explained and there

are no cancellation rules applicable?

What should we predict?

➤ For example:what if introductory questions are

uninteresting, by default?

➤ This is the multiple extension problem.

➤ Recall: an extensionof 〈F, H〉 is the set of logical

consequences ofF and a maximal scenario of〈F, H〉.
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Competing Arguments

ai_im

interesting_to_mary

about_skiing

non_academic_recreation

ski_Whistler_pagelearning_to_skiinduction_page

interesting_to_fred

about_learning

about_ai

nar_im nar_if

l_ai s_nar
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Skeptical Default Prediction

➤ We predict g if g is in all extensions of〈F, H〉.
➤ Supposeg isn’t in extensionE. As far as we are

concernedE could be the correct view of the world.

So we shouldn’t predictg.

➤ If g is in all extensions, then no matter which extension

turns out to be true, we still haveg true.

➤ Thusg is predicted even if an adversary gets to select

assumptions, as long as the adversary is forced to select

something. You do not predictg if the adversary can pick

assumptions from whichg can’t be explained.
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Minimal Models Semantics for Prediction

Recall: logical consequence is defined as truth in all models.

We can define default prediction as truth in all

minimal models.

SupposeM1 andM2 are models of the facts.

M1 <H M2 if the hypotheses violated byM1 are a strict

subset of the hypotheses violated byM2. That is:

{h ∈ H ′ : h is false inM1} ⊂ {h ∈ H ′ : h is false inM2}
whereH ′ is the set of ground instances of elements ofH.
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Minimal Models and Minimal Entailment

➤ M is a minimal model of F with respect toH if M is a

model ofF and there is no modelM1 of F such that

M1 <H M.

➤ g is minimally entailedfrom 〈F, H〉 if g is true in all

minimal models ofF with respect toH.

➤ Theorem:g is minimally entailed from〈F, H〉 if and

only if g is in all extensions of〈F, H〉.
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Abduction

Abduction is an assumption-based reasoning strategy where

➤ H is a set of assumptions about what could be happening

in a system

➤ F axiomatizes how a system works

➤ g to be explained is an observation or a design goal

Example: in diagnosisof a physical system:

H contain possible faults and assumptions of normality,

F contains a model of how faults manifest themselves

g is conjunction of symptoms.
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Abduction versus Default Reasoning

Abduction differs from default reasoning in that:

➤ The explanations are of interest, not just the conclusion.

➤ H contains assumptions of abnormality as well as

assumptions of normality.

➤ We don’t only explain normal outcomes. Often we want

to explain why some abnormal observation occurred.

➤ We don’t care if¬g can also been explained.
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Abductive Diagnosis

➤ You need to axiomatize the effects of normal conditions

and faults.

➤ We need to be able to explain all of the observations.

➤ Assumables are all of those hypotheses that require no

further explanation.
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Electrical Environment

light

two-way
switch

switch

off

on

power
outlet

circuit
breaker

outside power

l1

l2

w1

w0

w2

w4

w3

w6

w5

p2

p1

cb2

cb1

s1

s2

s3
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lit(L)⇐ light(L) & ok(L) & live(L).

dark(L)⇐ light(L) & broken(L).

dark(L)⇐ light(L) & dead(L).

live(W)⇐ connected_to(W , W1) & live(W1).

dead(W)⇐ connected_to(W , W1) & dead(W1).

dead(W)⇐ unconnected(W).

connected_to(l1, w0)⇐ true.

connected_to(w0, w1)⇐ up(s2) & ok(s2).

unconnected(w0)⇐ broken(s2).

unconnected(w1)⇐ broken(s1).

unconnected(w1)⇐ down(s1).

false← ok(X) ∧ broken(X).

assumableok(X), broken(X), up(X), down(X).
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Explaining Observations

➤ To explainlit(l1) there are two explanations:

{ok(l1), ok(s2), up(s2), ok(s1), up(s1), ok(cb1)}
{ok(l1), ok(s2), down(s2), ok(s1), down(s1), ok(cb1)}

➤ To explainlit(l2) there is one explanation:

{ok(cb1), ok(s3), up(s3), ok(l2)}
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Explaining Observations (cont)

➤ To explaindark(l1) there are 8 explanations:

{broken(l1)}
{broken(cb1), ok(s1), up(s1), ok(s2), up(s2)}
{broken(s1), ok(s2), up(s2)}
{down(s1), ok(s2), up(s2)}
{broken(cb1), ok(s1), down(s1), ok(s2), down(s2)}
{up(s1), ok(s2), down(s2)}
{broken(s1), ok(s2), down(s2)}
{broken(s2)}
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Explaining Observations (cont)

➤ To explaindark(l1) ∧ lit(l2) there are explanations:

{ok(cb1), ok(s3), up(s3), ok(l2), broken(l1)}
{ok(cb1), ok(s3), up(s3), ok(l2), broken(s1), ok(s2), up(s2)}
{ok(cb1), ok(s3), up(s3), ok(l2), down(s1), ok(s2), up(s2)}
{ok(cb1), ok(s3), up(s3), ok(l2), up(s1), ok(s2), down(s2)}
{ok(cb1), ok(s3), up(s3), ok(l2), broken(s1), ok(s2), down(s2}
{ok(cb1), ok(s3), up(s3), ok(l2), broken(s2)}
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Abduction for User Modeling
Suppose the infobot wants to determine what a user is
interested in. We can hypothesize the interests of users:

H = {interested_in(Ag, Topic)}.
Suppose the corresponding facts are:

selects(Ag, Art)←
about(Art, Topic) ∧
interested_in(Ag, Topic).

about(art_94, ai).

about(art_94, info_highway).

about(art_34, ai). about(art_34, skiing).
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Explaining User’s Actions

There are two minimal explanations ofselects(fred, art_94):

{interested_in(fred, ai)}.
{interested_in(fred, information_highway)}.

If we observeselects(fred, art_94) ∧ selects(fred, art_34),

there are two minimal explanations:

{interested_in(fred, ai)}.
{interested_in(fred, information_highway),

interested_in(fred, skiing)}.
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Image interpretation

➤ A sceneis the world that the agent is in.

➤ An image is what the agent sees.

➤ Vision: given an image try to determine the scene.

➤ Typically we know more about thescene→ image

mapping than theimage→ scene mapping.
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Example Scene and Image

Scene Image
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Scene and Image Primitives

Scene Primitives Image Primitives

land, water region

river, road, shore chain

joins(X, Y , E) X
Y

tee

(E ∈ {0, 1} specifies which end ofX)

mouth(X, Y , E) X
Y

cross(X, Y) X
Y

chi
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Scene and image primitives (cont.)

Scene Primitives Image Primitives

beside(C, R) C
R

bounds(C,R)

source(C, E) C
E

open(C,E)

loop(C)
C closed(C)

inside(C, R)
CR

interior(C,R)

outside(C, R)
C R exterior(C,R)
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Axiomatizing the Scene→ Image map

chain(X)← river(X) ∨ road(X) ∨ shore(X).

region(X)← land(X) ∨ water(X).

tee(X, Y , E)← joins(X, Y , E) ∨ mouth(X, Y , E).

chi(X, Y)← cross(X, Y).

open(X, N)← source(X, N).

closed(X)← loop(X).

interior(X, Y)← inside(X, Y).

exterior(X, Y)← outside(X, Y).

assumableroad(X), river(X), shore(X), land(X), . . .

assumablejoins(X, Y , E), cross(X, Y), mouth(L, R, E) . . .
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Scene Constraints

false← cross(X, Y) ∧ river(X) ∧ river(Y).

false← cross(X, Y) ∧ (shore(X) ∨ shore(Y)).

false← mouth(R, L1, 1) ∧ river(R) ∧ mouth(R, L2, 0).

start(R, N)← river(R) ∧ road(Y) ∧ joins(R, Y , N).

start(X, Y)← source(X, Y).

false← start(R, 1) ∧ river(R) ∧ start(R, 0).

false← joins(R, L, N) ∧ river(R) ∧ (river(L) ∨ shore(L)).

false← mouth(X, Y , N) ∧ (road(X) ∨ road(Y)).

false← source(X, N) ∧ shore(X).

false← joins(X, A, N) ∧ shore(X).

false← loop(X) ∧ river(X).
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Scene constraints (continued)

false← shore(X) ∧ inside(X, Y) ∧ outside(X, Z) ∧
land(Y) ∧ land(Z).

false← shore(X) ∧ inside(X, Y) ∧ outside(X, Z) ∧
water(Z) ∧ water(Y).

false← water(Y) ∧ beside(X, Y) ∧
(road(X) ∨ river(X)).
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Describing an image

0

1

c1

c2 r2

r1

chain(c1) ∧ chain(c2) ∧
region(r1) ∧ region(r2) ∧
tee(c2, c1, 1) ∧
bounds(c2, r2) ∧
bounds(c1, r1) ∧
bounds(c1, r2) ∧
interior(c1, r1) ∧
exterior(c1, r2) ∧ open(c2, 0)

∧ closed(c1)
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A more complicated image

0

1

01

0

1

c6
c5

c1
c2

c3

c4

r3
r4

r2

r11

0
chain(c1) ∧ open(c1, 0) ∧
open(c1, 1) ∧ region(r1) ∧
bounds(c1, r1) ∧ chain(c2) ∧
tee(c2, c1, 0) ∧ bounds(c2, r1)

∧ chain(c3) ∧ bounds(c3, r1) ∧
region(r2) ∧ bounds(c3, r2) ∧
chain(c5) ∧ closed(c5) ∧
bounds(c5, r2) ∧
exterior(c5, r2) ∧ region(r3) ∧
bounds(c5, r3) ∧
interior(c5, r3) ∧…
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Parameterizing Assumables
Suppose we had a batteryb connected to voltage meter:

To be able to explain a measurement of the battery voltage,
we need to parameterize the assumables enough:

assumableflat(B, V).

assumabletester_ok.

measured_voltage(B, V)← flat(B, V) ∧ tester_ok.

false← flat(B, V) ∧ V > 1.2.
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Evidential and Causal Reasoning

Much reasoning in AI can be seen as evidential reasoning ,

(observations to a theory) followed by causal reasoning

(theory to predictions).

Diagnosis Given symptoms, evidential reasoning leads to

hypotheses about diseases or faults, these lead via causal

reasoning to predictions that can be tested.

Robotics Given perception, evidential reasoning can lead us

to hypothesize what is in the world, that leads via causal

reasoning to actions that can be executed.
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Combining Evidential & Causal Reasoning

To combine evidential and causal reasoning, you can either

➤ Axiomatize from causes to their effects and

➣ use abduction for evidential reasoning

➣ use default reasoning for causal reasoning

➤ Axiomatize both

➣ effects −→ possible causes (for evidential reasoning)

➣ causes −→ effects (for causal reasoning)

use a single reasoning mechanism, such as default

reasoning.
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Combining abduction and default reasoning

➤ Representation:

➣ Axiomatize causally using rules.

➣ Have normality assumptions (defaults) for prediction

➣ other assumptions to explain observations

➤ Reasoning:

➣ given an observation, use all assumptions to explain

observation (find base causes)

➣ use normality assumptions to predict from base

causes explanations.
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Causal Network

file_removed

link_down

data_absent

error_message

another_source_tried

data_inadequate

fr_da

ld_da

da_em

da_ast

di_ast

Why is the infobot trying another information source?

(Arrows are implications or defaults. Sources are assumable.)
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Code for causal network

error_message← data_absent ∧ da_em.

another_source_tried ← data_absent ∧ da_ast

another_source_tried ← data_inadequate ∧ di_ast.

data_absent← file_removed ∧ fr_da.

data_absent← link_down ∧ ld_da.

default da_em, da_ast, di_ast, fr_da, ld_da.

assumable file_removed.

assumable link_down.

assumable data_inadequate.
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Example: fire alarm

tampering

alarm

fire

leaving

report

smoke
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Fire Alarm Code

alarm← tampering ∧ tampering_caused_alarm.

default tampering_caused_alarm.

assumable tampering.

alarm← fire ∧ fire_caused_alarm.

default fire_caused_alarm.

assumable tampering.

assumable fire.

smoke← fire ∧ fire_caused_smoke.

default fire_caused_smoke.
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Explaining Away

➤ If we observe report there are two minimal explanations:

➣ one with tampering

➣ one with fire

➤ If we observed just smoke there is one explanation

(containing fire). This explanation makes no predictions

about tampering.

➤ If we had observed report ∧ smoke, there is one minimal

explanation, (containing fire).

➣ The smoke explains away the tampering. There is

no need to hypothesise tampering to explain report.
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