Partial-Order Planning

- traditional planner enforce a total ordering on the actions
- leads to a high number of alternative plans, even if the sequence of actions is irrelevant
- partial-order planning:
 - leave the order of actions underspecified
 - only commit to an ordering when forced to do
- also called non-linear planner
Partial Order

- explicit linear precedence relation between the possible actions of a plan
 \[A_0 < A_1 \]
- linear precedence is transitive and asymmetric
- additionally assumed pseudo actions \textit{start} and \textit{finish}
- any total ordering consistent with the partial ordering is a solution
- two step procedure:
 - obtain a partial plan
 - extract a solution
Causal Links

- every precondition P of A_1 will have an action A_0 associated that achieves that precondition

 $$cl(A_0, P, A_1)$$

- if there is a causal link between A_0 and A_1, $A_0 < A_1$ must be part of the plan
- A_0 is said to support P
- any action A_2 which deletes P must be either before A_0 or after A_1
Partial Plan

• a partial plan is a 3-tupel \((\mathcal{A}, \mathcal{O}, \mathcal{L})\) with
 • \(\mathcal{A}\) a set of actions
 • \(\mathcal{O}\) a linear precedence relation over \((\mathcal{A})\)
 • \(\mathcal{L}\) a set of causal links

• plan \(P_1 = (\mathcal{A}_1, \mathcal{O}_1, \mathcal{L}_1)\) is an extension of plan \(P_2 = (\mathcal{A}_2, \mathcal{O}_2, \mathcal{L}_2)\) if \(\mathcal{A}_2 \subseteq \mathcal{A}_1\) and \(\mathcal{O}_2 \subseteq \mathcal{O}_1\) and \(\mathcal{L}_2 \subseteq \mathcal{L}_1\)

• action \(A\) threatens a causal link \(cl(A_0, P, A_1)\) if \(A_0\) deletes \(P\)

• a plan is safe whenever action \(A\) threatens \(cl(A_0, P, A_1)\), the partial order \(\mathcal{A}\) entails either \(A < A_0\) or \(A_1 < A\)
Algorithm

- agenda: list of subgoals $goal(P, A_1)$
- initially: preconditions for finish, i.e. the final goal to be achieved
- choose a subgoal P which is a precondition for action A_1
- choose an action A_0 which supports P
 - if A_0 is already in the agenda:
 - add an ordering constraint $A_0 < A_1$
 - add a causal link between $cl(A_0, P, A_1)$
 - for any action A_2 in the plan that threatens P add a precedence constraint $A_2 < A_0$ or $A_1 < A_2$
 - if A_0 is a new action
 - add its preconditions to the agenda
- continue until the agenda is empty
Algorithm

- nondeterministic procedure with two choice points
 - Which action A_0 to selected to achieve P?
 - Whether to place action A_2 which deletes P before A_0 or after A_1?
- if actions may occur twice in a plan, they need to be indexed to be able to order instances of actions
Example

- **goal**: \(\text{carrying}(\text{rob}, \text{parcel}) \land \text{sitting_at}(\text{rob}, \text{lab2}) \)

- **call**:

\[
? \leftarrow \text{pop}(
\text{plan}([\text{start, finish}, [\text{start < finish}], []]),
[\text{goal}(\text{carrying}(\text{rob, parcel}), \text{finish})],
\text{goal}(\text{sitting_at}(\text{rob, lab2}), \text{finish})],
[]).
\]
Example (cont.)

- **select the first subgoal:** \(\text{goal}(\text{carrying}(\text{rob}, \text{parcel}), \text{finish}) \)

- **resulting plan:**

 \[
 \text{plan}(\begin{array}{l}
 \text{pickup}(\text{rob}, \text{parcel}, P), \text{start}, \text{finish}], \\
 \text{start} < \text{finish}, \\
 \text{start} < \text{pickup}(\text{rob}, \text{parcel}, P), \\
 \text{pickup}(\text{rob}, \text{parcel}, P) < \text{finish}], \\
 \text{cl}(\text{pickup}(\text{rob}, \text{parcel}, P), \text{carrying}(\text{rob}, \text{parcel}), \text{finish})]
 \end{array})
 \]

- **resulting agenda:**

 \[
 \begin{array}{l}
 \text{goal}(\text{sitting_at}(\text{rob}, \text{lab2}), \text{finish}), \\
 \text{goal}(\text{sitting_at}(\text{parcel}, P), \text{pickup}(\text{rob}, \text{parcel}, P)), \\
 \text{goal}(\text{at}(\text{rob}, P), \text{pickup}(\text{rob}, \text{parcel}, P))
 \end{array}
 \]
Example (cont.)

- select the next subgoal: \(\text{goal}(\text{sitting_at}(\text{rob}, \text{lab2}), \text{finish}) \)
- resulting plan:

\[
\text{plan}(\ [\text{move}(\text{rob}, \text{o103}, \text{lab2}), \text{pickup}(\text{rob}, \text{parcel}, \text{P}), \text{start}, \text{finish}], \\
[\text{start} < \text{finish}, \\
\text{start} < \text{pickup}(\text{rob}, \text{parcel}, \text{P}), \\
\text{pickup}(\text{rob}, \text{parcel}, \text{P}) < \text{finish}, \\
\text{start} < \text{move}(\text{rob}, \text{o103}, \text{lab2}), \\
\text{move}(\text{rob}, \text{o103}, \text{lab2}) < \text{finish}], \\
[\text{cl}(\text{move}(\text{rob}, \text{o103}, \text{lab2}), \text{sitting_at}(\text{rob}, \text{lab2}), \text{finish}), \\
\text{cl}(\text{pickup}(\text{rob}, \text{parcel}, \text{P}), \text{carrying}(\text{rob}, \text{parcel}), \text{finish})])
\]
Example (cont.)

- resulting agenda:

\[
\begin{align*}
&\text{goal}(\text{sitting_at}(\text{parcel}, P), \text{pickup}(\text{rob}, \text{parcel}, P)), \\
&\text{goal}(\text{at}(\text{rob}, P), \text{pickup}(\text{rob}, \text{parcel}, P)), \\
&\text{goal}(\text{unlocked}(\text{door1}), \text{move}(\text{rob}, o103, \text{lab2})), \\
&\text{goal}(\text{sitting_at}(\text{rob}, o103), \text{move}(\text{rob}, o103, \text{lab2}))
\end{align*}
\]
Example
Efficiency issues

- hierarchical planning
- describe the problem space on different levels of granularity

<table>
<thead>
<tr>
<th>traveling to Hong Kong</th>
</tr>
</thead>
<tbody>
<tr>
<td>reaching the airport</td>
</tr>
<tr>
<td>going by train</td>
</tr>
<tr>
<td>calling a taxi</td>
</tr>
<tr>
<td>flying</td>
</tr>
<tr>
<td>finding the hotel</td>
</tr>
<tr>
<td>preparing the address</td>
</tr>
<tr>
<td>calling a taxi</td>
</tr>
</tbody>
</table>
Efficiency issues

- preprocessing
 - collect information about the planning problem
- reordering goals
 - computing of a goal agenda
 - fundamental relation: B needs to be achieved before B
 - domain dependent: $\text{washing}(X) \prec \text{drying}(X)$
 - domain independent: B cannot be achieved after A has been achieved
- incremental plan extension
 - start with a subset of goals
 - extend it by including an increasing number of goals
Reactive planning

- the plan has to be found within certain temporal bounds
- incremental planning
 - planning and action needs to be interleaved
- plan refinement
 - start with a tentative plan and try to improve it by transformation