
Description Logics

Agenda

• Family of Description Logics

• The RACER DL-System
TBox and ABox
Inference Services

• Application examples
User modelling
Content-based image retrieval
Database extensions
Software Engineering

• OWL Web Ontology Language

Description Logics for
Knowledge Representation

DLs are a family of knowledge-representation formalisms
• Decidable subset of FOL
• Object-centered, roles and features (binary relations)
• Necessary vs. sufficient attributes
• Inference services

− subsumption check
− consistency check
− classification
− abstraction
− default reasoning
− spatial and temporal reasoning

• Guaranteed correctness, completeness, decidability and
complexity properties

• Highly optimized implementations (e.g. RACER)

Development of
Description Logics

There exist several experimental and commercial developments of DLs,
among them
• KL-ONE first conception of a DL (1985)
• CLASSIC commercial implementation by AT&T
• LOOM experimental system at USC
• FaCT experimental and commercial system (Horrocks, Manchester)
• RACER experimental and commercial system (Haarslev & Moeller)

There is active research on DLs:
• Extending the expressivity of concept languages
• Decidability and tractability of inference services
• Integration of predicates over concrete domains (e.g. numbers)
• Adapting to Semantic Web requirements
• Highly optimized implementations
• Developing new inference services (e.g. for scene interpretation)

Family of Description Logics
AL
Attribute Language ∀ ∩

ALC
Complement

ALC(D)
concrete Domains D, P

ALCRP(D)
Roles defined wrt Predicates

ALCNF (KRIS)
Number restrictions (≥ n r) (≤ n r)
Features with same-as

ALCQRIFO (LOOM)
Qualified number restrictions (≥ n r C)(≤ n r C)
Role conjunction, Inverse roles
Features with same-as, One-of, fills

ALCHfR+ (FaCT)
role Hierarchies with multiple parents
features without same-as
transitive Roles

ALNFIh (CLASSIC)
Number restrictions (≥ n r) (≤ n r)
Features with same-as, Inverse
hierarchies with single inheritance

ALCNHR+ (RACE)
role Hierarchies with multiple parents
Number restrictions (≥ n r) (≤ n r)
transitive Roles

ALCQHIR+ (RACER)
role Hierarchies with multiple parents
 Qualified number restrictions (≥ n r C) (≤ n r C)
Inverse roles, transitive Roles, integers and reals

Description Logics Literature

The Description Logic Handbook
F. Baader, D. Calvanese, D. MacGuinness, D. Nardi, P. Patel-Schneider (eds.)
Cambridge University Press, 2003

OWL Web Ontology Language Guide
W3C Recommendation 10 February 2004
http://www.w3.org/TR/2004/REC-owl-guide-20040210

RacerPro Reference Manual Version 1.9
Racer Systems GmbH&Co. KG, December 8, 2005
http://www.racer-systems.com/products/racerpro/manual.phtml

The RACER DL-System

• Highly expressive DL ALCQHIR+
- Role hierarchies with multiple parents

 - Qualified number restrictions (≥ n r C) (≤ n r C),
- Inverse roles, transitive Roles
- Integers and reals

• Available as product RacerPro (http://www.racer-systems.com)
- Reasoner for the Semantic Web languages OWL/RDF
- Evaluation copy for university research
- Comprehensive manual

• Developed in the Cognitive Systems Laboratory at Hamburg University
Research applications in
- information management: TV-Assistant
- content-based image retrieval
- scene interpretation

RACER Concept Language

C concept term
CN concept name
R role term
RN role name

C -> CN
top
bottom
(not C)
(and C1 ... Cn)
(or C1 ... Cn)
(some R C)
(all R C)
(at-least n R)
(at-most n R)
(exactly n R)
(at-least n R C)
(at-most n R C)
(exactly n R C)
CDC

concept definition
(equivalent CN C)

concept axioms
(implies CN C)
(implies C1 C2)
(equivalent C1 C2)
(disjoint C1 ... Cn)

roles
R -> RN

(RN role-props)
role-props ->

((:transitive t)
 (:feature t)
 (:symmetric t)
 (:reflexive t)
 (:inverse CN)
 (:domain CN)
 (:range CN))

concrete-domain concepts
AN attribute name
CDC -> (a AN)

(an AN)
(no AN)
(min AN integer)
(max AN integer)
(> aexpr aexpr)
(>= aexpr aexpr)
(< aexpr aexpr)
(<= aexpr aexpr)
(= aexpr aexpr)

aexpr -> AN
real
(+ aexpr1 aexpr1*)
aexpr1

aexpr1 -> real
AN
(* real AN)

Primitive and Defined
Concepts

Main building blocks are primitive oder defined concepts.

Primitive concepts: concept => satisfied properties and relations
satisfied properties and relations are necessary conditions
for an object to belong to a class

Defined concepts: concept <=> satisfied properties and relations
satisfied properties and relations are necessary and sufficient
conditions for an object to belong to a class

Concept expressions of a DL describe classes of entities in terms of
properties (unary relations) and roles (binary relations).

Primitive concept "person":
(implies person (and human (some has-gender (or female male))))

Defined concept "parent":
(equivalent parent (and person (some has-child person)))

Example of a TBox

(signature :atomic-concepts (person human female male woman man parent
mother father grandmother aunt uncle sister brother)

:roles ((has-child :parent has-descendant)
(has-descendant :transitive t)
(has-sibling)
(has-sister :parent has-sibling)
(has-brother :parent has-sibling)
(has-gender :feature t)))

(implies person (and human (some has-gender (or female male))))
(disjoint female male)
(implies woman (and person (some has-gender female)))
(implies man (and person (some has-gender male)))
(equivalent parent (and person (some has-child person)))
(equivalent mother (and woman parent))
(equivalent father (and man parent))
(equivalent grandmother (and mother (some has-child (some has-child person))))
(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))
(equivalent brother (and man (some has-sibling person)))
(equivalent sister (and woman (some has-sibling person)))

Signature of TBox

Concept axioms

Concept and Role Hierachies
Implied by TBox

top

human

person

parent

mother

grandmother

bottom

man woman

brother father sister

auntuncle female

r

has-gender! has-sibling has-descendant*

has-brotherhas-sister has-child

r universal role
! attribute (feature)
* transitive role

male

TBox Inferences

A DL system offers several inference services. At the core is a
consistency test:

?C *bottom* (the empty concept)

Example: (and (at-least 1 has-child) (at-most 0 has-child)) *bottom*

Consistency checking is the basis for several other inference services:

• subsumption
(implies C1 C2) <=> (and C1 (not C2)) *bottom*

• classification of a concept expression
searches the existing concept hierarchy for the most special concept
which subsumes the concept expression

Formal Semantics of
Concept Expressions

D Set of all possible domain objects

Extension of a concept expression C
(represents meaning of C)

Extension of a role RN
(represents meaning of RN)

Formal semantics of concept operations:

E[*bottom*] = { }

E[(and C1 ... Cn)] = E[C1] ∩ ... ∩ E[Cn]

E[(or C1 ... Cn)] = E[C1] E[Cn]

E[(all RN C)] =

E[(some RN C)] =

E C[]⊆D

E RN[]⊆ D ×D

∪ ... ∪

€

x | ∀(x, y) ∈ E RN[] ⇒ y ∈ E C[]{ }
x | ∃(x, y)∈E RN[] ∧ y∈E C[]{ }

ABox of a
Description Logic System

TBox = terminological knowledge (concepts and roles)
ABox = assertional knowledge (facts)

An ABox contains:
- concept assertions (instance IN C)

individual IN is instance of a concept expression C

- role assertions (related IN1 IN2 RN)
individual IN1 is related to IN2 by role RN

• An ABox always refers to a particular TBox.
• An ABox requires unique names.
• ABox facts are assumed to be incomplete (OWA).

OWA = Open World Assumption
(new facts may be added, hence inferences are restricted)

CWA = Closed World Assumption
(inference assumes that all facts are in ABox)

ABox Inferences

ABox inferences = inferring facts about ABox individuals

Typical queries:

• consistency Is ABox consistent?

• retrieval Which individuals satisfy a concept expression?

• classification What are the most special concept names which
describe an individual?

ABox consistency checking is in general more complicated than TBox
consistency checking.

ABox consistent <=> there exists a "model" for ABox and TBox

All ABox inferences are based on the ABox consistency check.

Contents of ABox
(instance alice mother)
(related alice betty has-child)
(related alice charles has-child)
(instance betty mother)
(related betty doris has-child)
(related betty eve has-child)
(instance charles brother)
(related charles betty has-sibling)
(instance charles (at-most 1 has-sibling))
(related doris eve has-sister)
(related eve doris has-sister)

doris

betty: mother

alice: mother eve

charles: (and brother (at-most 1 has-sibling))

has-
child

has-
child

has-
sister

has-
child

has-
child

has-
sibling

Questions and answers
(individual-instance? doris woman) Is doris instance of the concept woman?
T

(individual-types eve) Of which concept names is eve an instance?
((sister) (woman) (person) (human) (*top*))

(individual-fillers alice has-descendant) What are the descendants of eve?
(doris eve charles betty)

(concept-instances sister) Which instances has the concept sister?
(doris betty eve)

Example of ABox Queries

Abstraction with
Description Logics

Abstraction = omission of properties or relations, extending a concept,
generalization

Examples:

• Superordinate concept name of a concept expression
(= concept classification)
(and person (some has-size tall)) → person

• Generalization of concept expressions
(and (some has-occupation professor) (at-least 3 has-child))

(and (some has-occupation civil-servant) (at-least 1 has-child))

• Concept expression which subsumes several individuals
1. classify individuals
2. determine least common subsumer (LCS)

- for RACER: trivial solution in terms of (OR C1 ... Cn)
- for DLs without OR: special abstraction operator LCS

ARD ZDF RTL SAT.1
20.15 20.15 20.15 20.00
Fußball-WM China heute Galactica Dragonheart
21.45 21.15 21.35 21.00
Sissi Wetten, daß... Braveheart Stirb langsam 2
22.30 22.00 22.45 22.15
Tagesthemen Heute Sexshow Rolling Stones
23.00 22.30 23.30 23.00
The Rock Terminator 2 Speed Alien

ABox Retrieval by TV Assistant

user selects
examples

system
proposes

program items
with similar

contents

Stirb langsam 2

Terminator 2

Braveheart

• Action/Horror
• Cinema Highlights
• Known actors
• New films

system
determines
similarity of

contents

TV assistant selects program items based on conceptual description
of user preferences represented in DL - prototype developed by LKI

ARD N3 RTL PRO 7
20.15 20.15 20.15 20.00
Schatzinsel Eiskunstlauf Goldfinger Psycho II
21.45 21.00 21.30 21.00
Lindenstraße Sterbehilfe Dallas Deep Impact
22.30 22.00 22.15 22.15
Tagesthemen Extra 3 Titanic Killerwale
23.00 22.30 23.30 23.00
Armageddon Achterbahn Robocop Arabella

Table-Top Scene Description

(equivalent cover
(and configuration

(exactly 1 has-part plate)
(exactly 1 has-part (and saucer (some near plate)))
(exactly 1 has-part (and cup (some on saucer)))

TBox (excerpt):

ABox (excerpt):
(instance plate1 plate)
(instance saucer1 saucer)
(instance saucer2 saucer)
(instance cup1 cup)
(instance cup2 cup)
(instance napkin1 napkin)
(instance cover1 cover)
(related saucer1 plate1 near)
((related cup1 saucer1 on)
(related napkin1 plate1 on)

(implies plate dish)
(implies saucer dish)
(implies cup dish)
(implies napkin cloth)

Queries for Table-Top Scene
Description

Queries:

(concept-instances cover)
⇒ (cover1)

(concept-instances (some on dish))
⇒ (cup1 napkin1)

(concept-instances (and cloth (some on plate))
⇒ (napkin1)

(concept-instances (not (some on saucer)))
⇒ () for OWA - a fact (related (cup2 saucer3 on)) could be added
⇒ (cup2) for CWA

Useful Extensions

Feature chains: (compose F1 ... Fn) short: (F1 o ... o Fn)
The composition of features F1 ... Fn is a feature whose fillers are the fillers of Fn
applied to the fillers of Fn-1 applied to ... the fillers of F1.

Feature (chain) agreement: (same-as F1 F2) short: (= F1 F2)
Concept expression for elements which possess the same fillers for features F1
and F2.
Example: (same-as (has-plate o has-colour) (has-saucer o has-colour))
Requirement for a cover that plate and saucer have the same colour

Cannot be combined with expressive DLs without jeopardising decidability!

Instead of features, also roles may be composed, and a subset operator
relates role-fillers similar to same-as for features.
Role-value map: (subset R1 R2)
Concept expression of elements where the fillers of role R1 are a subset of the
fillers of role R2.

Causes undecidability even in DLs with low expressivity (e.g. CLASSIC).

RACER Query Language

(retrieve <list-of-objects> <query-body>)

Interface language for retrieving patterns from an ABox

Example:

(retrieve (?x ?y ?z) (and (?x plate)
(?y saucer)
(?z cup)
(?x ?y near)
(?z ?y on)))

(((?x plate1) (?y saucer1) (?z cup1))
 ((?x plate2) (?y saucer2) (?z cup2)))

Basic retrieval command:

Note: Query language retrieval commands allow to retrieve patterns
for which no individuals have been introduced.

Description Logics for
 Intelligent Database Services

conventional
database

logical model

extended database

Logical model provides
• additional services
• guarantees for correctness and

completeness of services
• reusability of problem solving

modules

problem solving module

Example for Ontology-Based
Inferences

Consistency check of E-business internet catalogue:

SPECIAL OFFER:

MMZ100, year 2000, à EUR 75,-

Elsewhere in the internet:

MMZ100 is a Multimedia Center
MMZ100 has a list price of DM 150,-
All entertainment systems built before 2002
are sold with 20% rebate on the list price
A Multimedia Center is a special TV set
A TV set is an entertainment system
1 EUR = 1,95583 DM

information is
inconsistent !

Application in
Software-Engineering

SOFTWARE-THING

SOFTWARE-OBJECT SOFTWARE-VALUE SOFTWARE-ACTION

CODE-BLOCK

DATA-TYPE

DATA-TYPE-INSTANCE ACTION-WHOLE ACTION-PART

METHOD

PROGRAM

CREATE-METHOD

DESTROY-METHOD

CHANGEABLE-INSTANCE

CONSTANT

SLOT VARIABLE

PARAMETER SELF-VARIABLE

MESSAGE

DESTROY INSTANTIATE

RETURN

SWITCH

ASSIGNMENT

PASS-PARAMETER

SELECT-SWITCH-CASE

Simplified code-level ontology
of Code-Based Management
System (Welty 95)

Enables focussed retrieval,
e.g. of variables in a
specific context

Web Ontology Language OWL

• Defines the basic concepts (resources) of a domain in terms of classes:
- classes can be viewed as "sets" of possible individuals
- hierarchies of concepts can be defined as subclasses

• Properties are defined by:
- constraints on their range and domain, or
- specialization (sub-properties)

• Structure is based on RDF

• Expressiveness and inferences equivalent to expressive Description Logics

Ontology Definitions
with OWL (1)

<owl:Class rdf:ID="Animal">
 <rdfs:label>Animal</rdfs:label>
 <rdfs:comment>
 This class of animals is illustrative of a number of ontological idioms.
 </rdfs:comment>
</<owl:Class>

<<owl:Class rdf:ID="Male">
 <rdfs:subClassOf rdf:resource="#Animal"/>
</<owl:Class>

<<owl:Class rdf:ID="Female">
 <rdfs:subClassOf rdf:resource="#Animal"/>
 <owl:disjointWith rdf:resource="#Male"/>
</<owl:Class>

<<owl:Class rdf:ID="Man">
 <rdfs:subClassOf rdf:resource="#Person"/>
 <rdfs:subClassOf rdf:resource="#Male"/>
</<owl:Class>

Class definitions

Subclasses

Multiple parent
classes

Ontology Definitions
with OWL (2)

Value restrictions
on property ranges

Number restrictions
on property ranges

<<owl:Class rdf:ID="Person">
 <rdfs:subClassOf rdf:resource="#Animal"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <<owl:onProperty rdf:resource="#hasParent"/>
 <<owl:toClass rdf:resource="#Person"/>
 </<owl:Restriction>
 </rdfs:subClassOf>

<rdfs:subClassOf>
 <<owl:Restriction <owl:cardinality="1">
 <<owl:onProperty rdf:resource="#hasFather"/>
 </<owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <<owl:Restriction>
 <<owl:onProperty rdf:resource="#shoesize"/>
 <<owl:minCardinality>1</<owl:minCardinality>
 </<owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Ontology Definitions
with OWL (3)

Object property
definitions

Datatyp property
definitions

<owl:ObjectProperty rdf:ID="hasParent">
 <rdfs:domain rdf:resource="#Animal"/>
 <rdfs:range rdf:resource="#Animal"/>
</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="age">
 <rdfs:comment>
 age is a DatatypeProperty whose range is xsd:decimal.
 age is also a UniqueProperty (can only have one age)
 </rdfs:comment>
 <rdf:type rdf:resource=

"http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
 <rdfs:range rdf:resource=

"http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger"/>
</owl:DatatypeProperty>

Use of URLs

Ontology Definitions
with OWL (4)

Subclass
restrictions

Unique
properties

Inverse
properties

<owl:Class rdf:about="#Person">
 <rdfs:subClassOf>
 <owl:Restriction owl:maxCardinalityQ="1">
 <owl:onProperty rdf:resource="#hasOccupation"/>
 <owl:hasClassQ rdf:resource="#FullTimeOccupation"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:UniqueProperty rdf:ID="hasMother">
 <rdfs:subPropertyOf rdf:resource="#hasParent"/>
 <rdfs:range rdf:resource="#Female"/>
</owl:UniqueProperty>

<owl:ObjectProperty rdf:ID="hasChild">
 <owl:inverseOf rdf:resource="#hasParent"/>
</owl:ObjectProperty>

Using Description Logics for
Knowledge-based Computer Vision

image sequence

low-level ABox description
of image sequence

TBox concepts

high-level ABox description
of image sequence

context knowledge

low-level image analysis

Basic architecture:

Meeting Representational
Requirements

• object oriented representations
yes, but needs user interface

• n-ary relations
no, only binary relations

• taxonomies
yes, automatically constructed from conceptdefinitions

• partonomies
yes, can be represented by roles

• spatial and temporal relations
can be computed from quantitative data via concrete domain
extensions

• qualitative predicates
can be computed from quantitative data via concrete domain
extensions

Concrete Domain Concepts in
RACER

CDC → (a AN) (an AN)
(no AN)
(min AN integer)
(max AN integer)
(equal AN integer)
(> aexpr aexpr)
(>= aexpr aexpr)
(< aexpr aexpr)
(<= aexpr aexpr)
(= aexpr aexpr)

aexpr → AN
real
(+ aexpr1 aexpr1*)
aexpr1

aexpr1 → AN
real
(* real AN)

Example:
Quantitative constraints on the size
of an object

(and (min size 13) (max size 20))

integer-valued attribute "size"
receives values from low-level vision

DL Concept for a Cover

(equivalent cover
(and configuration

(exactly 1 cv-pl plate)
(exactly 1 cv-sc (and saucer (some near plate)))
(exactly 1 cv-cp (and cup (some on saucer)))
(subset cv-pl (compose cv-sc near))
(subset cv-sc (compose cv-cp on))))

• parts are expressed as qualified fillers of specific roles
e.g. cv-pl, cv-sc, cv-scp

• sameness (or distinctness) of parts and properties of
parts are expressed by the subset construct

• spatial constraints are modelled as primitive predicates
e.g. near, on

DL Concept for a Bridge
Assumptions:
Image analysis computes bottom-up
• strips (= lengthy regions)
• colours
• spatial relations (touch, contain)

(equivalent bridge
(and strip-section

(some has-road road)
(some has-river1 river)
(some has-river2 river)
(subset has-road o contain)
(subset has-river1 o touch)
(subset has-river2 o touch)))

(equivalent road
(and strip

(some has-colour road-colour)))

(equivalent river
(and strip

(some has-colour river-colour)))

TBox:

Example ABox:
(instance strip1 strip)
(instance strip2 strip)
(instance strip3 strip)
• • •

(related strip1 blue has-colour)
(related strip2 blue has-colour)
(related strip3 greyhas- colour)
• • •

(related strip1 strip3 touch)
(related strip2 strip3 touch)
(related strip3 strip1 touch)
(related strip3 strip2 touch)
• • •

Problem: Generating instances of strip-section

(equivalent strip-section
(and (some within strip)

(= has-width within o has-width)))

Animated slide!

Simplified Concept for
Placing a Cover

Severe disadvantage of purely symbolic spatial and temporal constraints:
Pairwise constraints must be computed bottom-up by low-level vision
procedures irrespective of high-level concepts!

(equivalent place-cover
(and agent-activity

(exactly 1 pc-tp1 (and transport (some tp-obj plate)))
(exactly 1 pc-tp2 (and transport

(some tp-obj saucer)
(some before (and transport (some tp-obj cup))))

(exactly 1 pc-tp3 (and transport (some tp-obj cup)))
(subset pc-tp3 (compose pc-tp2 before))))

Express spatial and temporal constraints as predicates over
concrete-domain elements

Quatitative Spatial and Temporal
Constraints

(equivalent place-cover
(and agent-activity

(exactly 1 pc-tp1 (and transport (some tp-obj plate))
(exactly 1 pc-tp2 (and transport (some tp-obj saucer))
(exactly 1 pc-tp3 (and transport (some tp-obj cup))
(<= pc-tp2 o tp-end pc-tp3 o tp-end)
(= pc-beg (minim pc-tp1 o tp-beg pc-tp2 o tp-beg pc-tp3 o tp-beg))
(= pc-end (maxim pc-tp1 o tp-end pc-tp2 o tp-end pc-tp3 o tp-end))
(<= (- pc-end pc-beg) max-duration))))

• Equality and inequality as concrete domain predicates

• Specific constraints for each concept

• Incremental constraint computation required for prediction!
Example: (and (= cv-sc o sc-loc cv-cp o cp-loc))
Known saucer position restricts expected cup positions

General Structure for
Aggregate Definitions

(equivalent <concept-name>
(and <parent-concept1> ... <parent-conceptN>

(<number-restriction1> <role-name1> <part-concept1>)
. . .
(<number-restrictionK> <role-nameK> <part-conceptK>)
<constraints between parts>))

Summary of DL constructs required for aggregates: ALCF(D)

=> aggregates can in principle be represented in RACER, however,
not all syntax features are currently available

DL Reasoning Services

• Concept satisfiability
• Concept subsumption
• Concept disjointness
• Concept classification
• TBox coherence
• ABox consistency w.r.t. a TBox
• Instance checking
• Most-specific atomic concepts of which an individual is an instance
• Instances of a concept
• Role fillers for a specified individual
• Pairs of individuals related by a specified role
• Conjunctive queries

 ABox consistency checking is at the heart of all reasoning services

 Model construction is the method of choice for many DL reasoners

DL Reasoning Support for
Knowledge-based Interpretations

• Maintaining a coherent knowledge base
Scene interpretation may require extensive common-sense knowledge,
intuitive knowledge representation is doomed

• Maintaining consistent scene interpretations
A consistent ABox is a (partial) model and hence formally a (partial) scene
interpretation => ABox consistency checking ensures consistent scene
interpretations

ABox realization (computing most specific concepts for individuals)
cannot be used in general:
• scene interpretations cannot be deduced
• high-level individuals must be hypothesized before consistency check

DL Support for Interpretation Steps
Aggregate instantiation
Determine aggregates for which an individual is a role filler
⇒ RACER query language

Instance specialization
Retrieve all specializations of a given concept
⇒ use specialization hierarchy

Instance expansion
Instantiate parts of an aggregate instance
⇒ easy service by looking up the aggregate definition

Instance merging
Determine whether it is consistent to unify two individual descriptions
=> unification by recursive specialization can be supported

Important missing service:
Preference measure for choosing "promising" alternatives

