
Knowledge-based Computer Vision 



What is Computer Vision? 

Computer Vision is the academic discipline dealing with task-oriented
reconstruction and interpretation of a scene by means of images.

Computer Vision is the academic discipline dealing with task-oriented
reconstruction and interpretation of a scene by means of images.

scene: section of the real world
stationary (3D) or moving (4D)

image: view of a scene
projection, density image (2D)
depth image (2 1/2D)
image sequence (3D)

reconstruction computer-internal scene description
and interpretation: quantitative + qualitative + symbolic

task-oriented: for a purpose, to fulfill a particular task
context-dependent, supporting actions of an agent



Basic System Architecture 

primitive scene description

image sequences of dynamic scenes

high-level 
scene interpretations

scene modelstask context

Knowledge-based
Scene Interpretation

Image Analysis



Illustration of Scene Interpretation 
Typical results of Image Analysis:

• spatial configurations of interest
points and their surroundings

• more or less meaningful regions

Typical result of Scene Interpretation:

"There is garbage collection in a street,
and a mailman distributes mail"

Computer Vision research has dealt
almost exclusively with Image Analysis,
(except of a few unperturbable
researchers in Germany ...)



Historical Example 

English paraphrase of automatically generated description:
The scene contains four moving objects: three cars and a pedestrian.
A VW drives from the Alte-Post to the front of the FBI. It stops.
Another VW drives towards Dammtor. It turns off Schlueterstrasse. It drives on
Bieberstrasse towards Grindelhof.
A BMW drives towards Hallerplatz. While doing so, it overtakes the VW which has
stopped, before Bieberstrasse. The BMW stops in front of the traffic lights.
The pedestrian walks towards Dammtor. While doing so, he crosses Schlueterstrasse
in front of the FBI.

Interpretation of a simulated
street scene with the system
NAOS (Neumann & Novak 1986)



State-of-the-art Example 

Ph.D. research of Somboon Hongeng (2003)

Recognition of an assault Recognition of a theft



Aggregates for Scene Interpretation 

What kind of concepts must be represented for scene interpretation?

Concepts for
• object constellations

e.g. laid-table, kitchen, parking ground, town
• activities, events, episodes

e.g. operating a CD-player, one car overtaking another, playing soccer

Typical scene interpretation concepts describe entities composed
of sub-entities related to each other in space and time. We call
such entities "aggregates".



Aggregate Structure 

aggregate name
parent concepts
external properties
parts
constraints between parts

Basic structure of a frame-based representation of an aggregate concept:

• aggregate name contains a symbolic ID
• parent concepts contains IDs of taxonomical parents
• external properties provide a description of the aggregate as a whole
• parts describe the subunits out of which an aggregate is composed
• constraints specify which relations must hold between the parts 



Occurrence Model for Overtaking 
name: overtake

:local-name ov
parents: :is-a occurrence-model
arguments: (?veh1 :is-a vehicle)

(?veh2 :is-a vehicle)
properties: (ue.B ue.E)
parts : (mv1 :is-a (move ?veh1 mv1.B mv1.E))

(mv2 :is-a (move ?veh2 mv2.B mv2.E))
(bh :is-a (behind ?veh1 ?veh2 bh.B bh.E))
(bs :is-a (beside ?veh1 ?veh2 bs.B bs.E))
(bf :is-a (before ?veh1 ?veh2 bf.B bf.E))
(ap :is-a (approach ?veh1 ?veh2 ap.B ap.E))
(rc :is-a (recede ?veh1 ?veh2 rc.B rc.E))

constraints: (ov.B = bh.B)
(ov.E = bf.E)
(ap :during mv1)
(ap :during mv2)
(rc :during mv1)
(rc :during mv2)
(bh :overlaps bs)
(bs :overlaps bf)
(bh :during ap)
(bf :during rc)

Note:
Aggregate format
may vary
according to
expressiveness of
knowledge
representation
language and
syntactic
conventions



Occurrence Model for Placing a Cover 

name: place-cover
parents: :is-a agent-activity
parts: pc-tp1 :is-a (transport with (tp-obj :is plate)) %transport of a plate

pc-tp2:is-a (transport with (tp-obj :is saucer)) %transport of a saucer
pc-tp3 :is-a (transport with (tp-obj :is cup)) %transport of a cup
pc-cv :is-a cover %cover configuration

properties: tb, te :is-a timepoint %begin and end timepoint of place-cover
constraints: pc-tp1.tp-ob = pc-cv.cv-pl %transport-plate object same as cover-plate

pc-tp2.tp-ob = pc-cv.cv-sc %transport-saucer object same as cover-saucer
pc-tp3.tp-ob = pc-cv.cv-cp %transport-cup object same as cover-cup
pc-cv.tb ≥ pc-tp1.te %cover begins after plate transport
pc-cv.tb ≥ pc-tp2.te %cover begins after saucer transport
pc-cv.tb ≥ pc-tp3.te %cover begins after cup transport
pc-tp3.tp-te ≥ pc-tp2.tp-te %cup transport ends after saucer transport
tb = pc-tp1.tb min pc-tp2.tb min pc-tp3.tb
te = pc-tp1.te max pc-tp2.te max pc-tp3.te
te ≤ tb + 80Δt %place-cover may not last more than 80 time units

Recognizing table-
laying actions



Model for a Cover Configuration 

name: cover
parents: :is-a configuration
parts: cv-pl :is-a plate

cv-sc :is-a saucer
cv-cp :is-a cup
cv-tt :is-a table-top

properties: w, h, tb, te %width and height of cover
constraints: cv-sc.pos NE cv-pl.pos %saucer position northeast of 

   plate position
cv-sc.rim CLOSE cv-pl.rim %saucer rim close to plate rim
cv-cp.pos = cv-sc.pos
cv-tt.rim SO cv-pl.rim %table-top rim south of plate rim

Spatial relations NO (north), NE (northeast), ... , SO (south), ... ,
CLOSE must be defined and computable based on parts properties.



Signal-Symbol Interface 
Assumptions
• Low-level image analysis provides evidence which can be

matched with object views of the conceptual knowledge base.

plate plate view saucer saucer view view descriptions of
conceptual

knowledge base

evidence of low-level
image analysis

• Evidence is represented in metric space.

• Evidence may be
-  regions corresponding to objects
-  blobs corresponding to object parts
-  descriptive features around interest points
...

depending on
sophistication of
object recognition
and categorisation



Matching Evidence with Views 
Bottom-up classification
Assign evidence to one of several view classes.
Model-based recognition problem with view classes as models.
In a probabilistic setting same as Bayes classification, except that
a priori class probabilities depend on interpretation context.

Top-down hypothesis verification
Check compatibility of top-down view hypothesis with available evidence
and other top-down hypotheses.
Checking with evidence is similar to bottom-up classification, except that
model is given and evidence is selected.
Checking with other top-down hypotheses is a harder task, as all
hypotheses may have uncertainty ranges. How can several hypotheses
with uncertain views and locations fit into an image, observing factual
evidence and occlusion rules?



Stepwise Scene Interpretation 
Given taxonomical and composional concept hierarchies, there are five
kinds of interpretation steps for constructing interpretations consistent
with evidence:

Repertoire of interpretation steps allows flexible interpretation strategies
e.g. mixed bottom-up and top-down, context-dependent, task-oriented

Evidence matching
Assign evidence to object view classes or verify view hypotheses.
Aggregate instantiation
Infer an aggregate from (not necessarily all) parts.
Instance specialization
Refine instances along specialisation hierarchy or in terms of aggregate parts.
Instance expansion
Instantiate parts of an instantiated aggregate.
Instance merging
Merge identical instances constructed by different interpretation steps.  



Basic Interpretation Algorithm
Enter context information
Repeat

Check for goal completion
Check for new evidence
Determine possible interpretation steps and update agenda
Select from agenda one of

{  evidence matching,
   aggregate instantiation,
   aggregate expansion,
   instance specialization,
   parameterization,
   constraint propagation }

Check for conflict
end

Conflict = unsatisfiable constraint net

=>  need for backtracking



Example for Interpretation Steps (1)

scene

lonely-dinner cluttered-table

cover

cv-plate cv-cup

candlestick

cs-candle ct-plate ct-cup

Of what view-class
is disk-view an
instance?

part-of
is-a
view-of

saucer

cv-saucer ct-saucercs-saucer

instance-of

cv-cup-
view

cs-candle-
view

ct-plate-
view

ct-cup-
view

cv-saucer-
view

ct-saucer-
view

cs-saucer-
view

saucer-
view

?disk-viewanimated slide

cv-plate-
view



Example for Interpretation Steps (2)

scene

lonely-dinner cluttered-table

cover

cv-plate cv-cup

candlestick

cs-candle ct-plate ct-cup

part-of
is-a
view-of

saucer

cv-saucer ct-saucer

instance-of

cv-plate-
view

cv-cup-
view

cs-candle-
view

ct-plate-
view

ct-cup-
view

cv-saucer-
view

ct-saucer-
view

cs-saucer-
view

saucer-
view

disk-view

For which role is the
saucer a filler?

?
?

?

cs-saucer

animated slide



Example for Interpretation Steps (3)

cv-plate

?

?

scene

lonely-dinner cluttered-table

cover

cv-cup

candlestick

cs-candle ct-plate ct-cup

part-of
is-a
view-of

saucer

cv-saucer ct-saucer

instance-of

cv-plate-
view

cv-cup-
view

cs-candle-
view

ct-plate-
view

ct-cup-
view

cv-saucer-
view

ct-saucer-
view

cs-saucer-
view

saucer-
view

disk-view

cs-saucer

Where should one
look for a candle?
For a cover?
For parts of the cover?

? ? ?

animated slide



Constraints

Constraints are used in Scene Interpretation for

• conceptual descriptions of aggregates (constraints between parts)
• checking the consistency of parts before aggregate instantiation 

Spatial and temporal constraints are most important for scene interpretation

constraining a spatial configuration constraining a temporal configuration

A B

C D

<

<

≤ ≥
A = red_traffic_light.beg
B = red_traffic_light.end
C = pass_traffic_light.beg
D = pass_traffic_light.end 



Checking Temporal Constraints (1)

Variables:  Time variables of an aggregate model
Domains:  Time points covering the period of interest
Constraints: 1.  Constraints imposed by aggregate model

2.  Constraints arising from evidence  

Example:

name: traffic_ light_violation
parts: red_traffic_light

pass_traffic_light
constraints: pass_traffic_light during red_traffic_light

Aggregate model:

Scene: red_traffic_light
pass_traffic_light

t
10:05:00 10:06:00 10:07:00 10:08:00



Checking Temporal Constraints (2)

Animated slide!

Nodes:
A = red_traffic_light.beg
B = red_traffic_light.end
C = pass_traffic_light.beg
D = pass_traffic_light.end 

Arcs:
A ≤ C
B ≥ D
A < B
C < D

Domains:  dom(A) = dom(B) = dom(C) = dom(D) = { 0:0:0 ... 23:59:59 }

pass_traffic_light during red_traffic_light

begin of occurrence before end

A B

C D

<

<

≤ ≥

{ 0:0:0 ... 23:59:59 } { 0:0:0 ... 23:59:59 }

{ 0:0:0 ... 23:59:59 } { 0:0:0 ... 23:59:59 }

Step 1: Obtain consistency for initial constraint net 
Step 2: Observe A=10:05:08, prune dom(A), obtain consistency
Step 3: Observe C=10:05:30, prune dom(C), obtain consistency
Step 4: Observe B=10:05:33, prune dom(B), obtain consistency
 Step 5: Observe D=10:05:36, prune dom(D), obtain consistency, no solution is possible

{ 0:0:123:59:58 }

23:59:58 } { 0:0:1{ 10:05:08 } { 10:05:09 ... 23:59:59 }

{ 10:05:08 ... 23:59:59 }{ 10:05:30 } { 10:05:31 ... 23:59:59 }

{ 10:05:31 ... 23:59:59}{ 10:05:33 }

{ 10:05:31 ... 10:05:33 }{  }

{  }{  }

{  }



Convex Time-Point Algebra
Variables: time variables Ti  
Domain of a variable: range of integers [timin .. timax]
Constraints: inequalities with offset Ti + cik ≤ Tk  

• Domains may always be represented by min- and max-values ("convexity
property").

• An increase of a min-value affects only time variables connected in edge
direction.

• A decrease of a max-value affects only time variables connected against
edge direction.

• In a cycle-free constraint net with N variables, any change of a domain
can be propagated in at most N(N-1) steps.

Graphical representation: Ti Tk

timin

timax tkmax

tkmin

cik



Allen´s Interval Algebra

><

mim

oio

fif

did

sis

=

A before B

A meets B

A overlaps B

A finishes B

A during B

A starts B

A equals B

Basic relations:



Composition Table for Interval Algebra (1)
For  I1 R12 I2  and  I2 R23 I3, the table specifies possible relations  I1 R13 I3. 
=> enables spatial reasoning
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Composition Table for Interval Algebra (2)

d f oi mi >

d f oi

d f oi

d
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s
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s = si

o fi di
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<

s

d f oi mi >

d f oi
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d
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o fi di si = s
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di si oi

f = fi
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< m o s d

f
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>>d f oi mi >dd
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>>>>>

>>>mimi

>>oi mi >oioi
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di si oi mi >di si oio f d s = si di fi oioo

di si oi mi >fi = fo s dmm
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Note that only 27 disjunctive combinations out of 8192 possible combinations occur.



Conceptual Neighborhoods

In order to permit coarse reasoning, it is useful to identify "neighboring"
interval relations.

Two relations between pairs of events are conceptual neighbors if they
can be directly transformed into one another by continuous deformation
(i.e. shortening or lengthening) of the events.

Conceptual neighborhood structure:

< m o = oi mi >

s d f

fi di si

Note that entries of the composition table contain only conceptual neighbors.

C. Freksa: Conceptual Neighborhood and its role in temporal and spatial reasoning. In: M. Singh,
L. Trave-Massuyes (eds.), Proc. IMACS Workshop on Decision Support Systems and Qualitative
Reasoning, North-Holland, 1991, 181-187



Spatial Constraints

In scene interpretation, spatial constraints restrict the relative position
and orientation of parts of aggregates.

Example:
Relative positions of plate,
saucer and table boundary
as parts of a cover

Several ways to represent 2D spatial constraints:
• Bounding box constraints
• Topological relations
• Various other qualitative spatial representations
• Grid region constraints
• Probability distributions



Bounding Boxes

x

y
A bounding box is
specified by

xmin, xmax, ymin, ymax

relativ to a reference
coordinate system

• object-centric vs. global reference coordinate system
• position constraints in terms of relative distances between bounding-

box boundaries
• orientation constraints in terms of angles between object axes

A bounding box is an approximate 2D shape description



Extending Discrete Time-Point
Algebra to 2D-Space

Use linear inequalities independently in two spatial dimensions.
(Bounding boxes must be parallel to reference system.)

Example: plate.x-end ≤ saucer.x-beg + 10
plate.x-end ≥ saucer.x-beg + 8
plate.y-end ≤ saucer.y-beg + 5
plate.y-end ≥ saucer.y-beg + 3
plate.x-beg ≥ table.x-beg
plate.x-end ≤ table.x-end
plate.y-beg ≤ table.y-beg + 5
plate.y-beg ≥ table.y-beg

Pairwise constraints can be combined to (quantitative) interval constraints:

plate.x-end  in  saucer.x-beg + [8 10]
plate.y-end  in  saucer.y-beg + [3 5]
plate.x-beg  in  table.x-beg + [0 inf]
plate.x-end  in  table.x-end + [-inf 0]
plate.y-beg  in  table.y-beg + [0 5]

in

[8 10]plate.
x-end

saucer.
x-beg

plate.
x-end

saucer.
x-beg

≤

≤

10

-8

equivalent!



Extending Allen´s Interval
Algebra Algebra to 2D-Space

Use Allen´s interval relations independently for two spatial dimensions. 

Example:

A

B horizontal relation: A o B
vertical relation: A < B

combination: A o|< B 

Interval relations are often not restrictive enough to describe the
variability of realistic spatial configurations.
Example: Cover configuration

plate o|m saucer
plate d|d table
plate >|s fork
plate <|s knife
saucer d|d table
fork d|d table
knife d|d table

Also covered by this description:



Topological Relations in RCC8
Elementary relations (disjunct):

• disconnected

• externally connected

• partial overlap

• tangential proper part

• non-tangential proper part

• equal

Composed relations:
• spatially_related
• connected
• overlapping
• inside

dc

ec

po

tpp tppi

ntpp ntppi

eq



RCC8 Conceptual Neighborhoods

Conceptual neighborhoods:

a

b

a

b

a

b
a b

ba

ab

ba

ab

Observations of two regions at two time points must be connected by
transitions along a conceptual-neighborhood path.

dc           ec             po

tpp ntpp

eq

tppi ntppi



RCC8 Composition Table
Table entries denote possible relations RAC, given RAB and RBC



Spatial Relations as Grid Point Sets

Relative location is a relation
O x R
between an object o and some
point r.

A grid region describes the possible locations (implicit OR) of a point r
relativ to a reference point and a reference orientation of an object o.

Example:
O = plate
r  = center-of-gavity of saucer



Qualitative Spatial Relations

SE

FRONT

NEAR

Grid-point sets constitute
qualitative location concepts

Constraint propagation is possible
via set relationships

Example:
(SE plate saucer) ^
(FRONT plate saucer)
      =>  inconsistent

animated slide



Spatial Relations as
Probability Distributions

Constraints on the coordinates (x, y) of a point relative to a
reference coordinate system can be expressed in terms of a
probability distribution (density).

x

y

p(R) probability density for
saucer position

Compare with inequality
constraints!



Logics of Knowledge-
based Computer Vision

deduction
"from the evidence
I conclude that this
is a table"

?

model
construction

"my conceptual model of
a table + hypothesised
scene components
explain the evidence"

!

Reiter & Mackworth 87, Matsuyama 90, Schröder 99

In 2D images (with possible occlusions) we never see the complete 3D reality.

Animated slide!



Definition of Model Construction
An interpretation  I = [ D, ϕ, π ] of a logical language maps
-  constant symbols of the language into individuals of a real-world domain D
-  N-ary predicate symbols of the language into predicate functions over DN

A model of some clauses is an interpretation for which all clauses are true.

How to do model construction:
• Establish mapping ϕ by assigning segmentation results to constant

symbols
• Establish mapping π by assigning computational procedures to

predicate symbols
• Construct model by finding clauses which are true

Deciding whether a model exists is undecidable in FOPC!
There may be infinitely many models!



Problems with Model Construction
Mapping ϕ
Establish mapping between real-world objects (as delivered by image
analysis procedures) and constant symbols (as used in symbolic
knowledge representation)
Problems: Segmentation performance, real-world objects not visible in a scene

Mapping π
Establish mapping between procedures which compute real-world
relations (e.g. "touch") and predicate symbols of symbolic knowledge
representation.
Problems: View-based procedures vs. 3D real-world relations, classification
uncertainty

True clauses
Establish that all clauses of the symbolic knowledge base are true for the
mappings ϕ and π.
Problems: Many clauses of the knowledge base may be irrelevant for a
concrete scene. A partial model may suffice for the vision task on hand.



So what is Knowledge-based
Computer Vision?

Intuitively:
A scene interpretation is a scene description in terms of instantiated
concepts consistent with evidence and context information.

real world

concepts context hypotheses evidence

constructed
model

not all concepts
are important

not all evidence
is important

Animated slide!



Partial Models
It seems plausible that a scene interpretation must not be proved to be
consistent with all clauses of the conceptual knowledge base.

Example:  Outdoor knowledge (e.g. about street traffic behavior) may not
be relevant for indoor scenes (e.g. setting a table).

But there may be scenes where knowledge beyond the concrete scene
may influence the interpretation.

Example:  Knowing that a person has arrived outside of a house may
affect the expected behavior of persons inside.

A good knowledge base provides aggregate concepts for all interrelated
entities, often overlapping specific domains. In general, any two
conceptual entities may be (indirectly) structurally connected (s. example
next slide).

Partiality of scene interpretations depends on vision goals and context,
not on structural boundaries of the conceptual knowledge base.



Interrelated Domains

let-in-a-
visitor

go-to-
door

open-
door

lay-
table

watch-TV

indoor-
behavior

visit-a-friendgo-
shopping

enter-
house

outdoor-
behavior

drive-to-
friend

ring-
bell

hear-
bell

notify-
by-bell

welcome part-of
is-a

Conceptual entities in seemingly disjoint domains may be interrelated,
hence model construction for scene interpretations cannot be restricted by
obvious boundaries.
Example: Outdoor behavior connected to indoor behavior



Finite Model Construction

• An image consists of regions and chains (edges)
• The image elements constitute all constant symbols of an

interpretation (domain closure assumption)
• Different constant symbols denote different image elements and vice

versa (unique name assumption)

Problem can be expressed in Propositional Calculus and solved as a
constraint satisfaction problem.

For MAPSEE, scene interpretation amounts to finding a mapping p for
predicates road, river, shore, land, water.

(Reiter & Mackworth 87, Poole)



Constructing Partial Models

Evidence matching
Assign evidence to object view classes or verify view hypotheses.
Aggregate instantiation
Infer an aggregate from (not necessarily all) parts.
Instance specialization
Refine instances along specialisation hierarchy or in terms of aggregate parts.
Instance expansion
Instantiate parts of an instantiated aggregate.
Instance merging
Merge identical instances constructed by different interpretation steps.  

If image analysis provides the intended mappings ϕ and π from symbols
into a real-world domain, model construction amounts to instantiating
clauses of the conceptual knowledge base such that all clauses are true.

The interpretation steps introduced earlier allow to instantiate all
concepts of the knowledge base.



Practical Requirements for
Partial Models

• Task-dependent scope and abstraction level
- no need for checking all predicates
  e.g. propositions outside a space and time frame may be uninteresting
- no need for maximal specialization
   e.g. geometrical shape of "thing" suffices for obstacle avoidance

• Partial model may not have consistent completion
- uncertain propositions due to inherent ambiguity
- predictions may be falsified

• Real-world agents need single "best" scene interpretation
- requires uncertainty rating for evidence and context (propositions)
- requires preference measure for scene interpretations

Logical model property provides only loose frame for possible
scene interpretations.



Stepwise Model Construction
place-cover

plate

move

plate-transport 

transport

plate-view

agent cup

cup-view

cup-transport

agent-view

agent-move

move1move2

place-cover

transport2 transport1

plate1agent1

viewtrack

track2 track1

view2 view1

move3move4

cup1

track3track4

agent2

view3view4

track4 track3

part-of

is-a

instance
Interpreting a place-cover occurrence

conceptual
knowledge base

Animated slide!


