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Geometry in Robotics 

To carry out actions in its environment, a robot must understand the
geometry of its body and its actuators relative to the geometry of the
environment. This is called kinematics.
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Direct kinematics:
Joint positions  ->  grasper position

Inverse kinematics:
Grasper position  ->  joint positions



Simple Workspaces 

cartesian     cylindrical     

sperical    revolutional    



Workspace of an Industrial Robot (1) 

Cincinnati Milacron T3



Workspace of an Industrial Robot (2) 

Puma Arm



Six Possible Joint Types 

rotational joint planar joint

cylindrical joint

spherical joint

prismatic joint

helical joint



Link Coordinate Systems

A link coordinate system is firmly
attached to a link of the robot.

A point p can be represented in
any link coordinate system.

p0

pi



Canonical Link Coordinates
Denavit-Hartenberg representation

zi-1, zi, zi+1 joint axes
(translation or rotation)

Relative orientation and rotation of 2
consecutive links defined by 4 parameters:
ai smallest distance between zi and zi-1

di distance between xi and xi-1 along zi-1
αi angle between zi and zi-1

θi angle between xi and xi-1 ("joint angle")

Typically, a joint has 1 degree of freedom
(DoF), so 1 parameter is variable and 3
parameters are fixed.



Link Coordinate Transforms (1)
A point pi in the ith link coordinate system can be expressed as pi-1 in the (i-1)th
link coordinate system:

pi-1 =    rotated -θi translated di translated ai rotated αι     pi
   about zi-1 along zi-1 along xi-1 about xi

Rotation about x-axis:

R = 1 0 0
0 cosα sinα
0 -sinα cosα

Homogeneous coordinates:  Aα =  0
       R 0

0
   0  0  0 1

Translation:

t =   tx
ty  
tz

Homogeneous coordinates:  At =    1  0  0
  0  1  0 t
  0  0  1
   0  0  0 1



Link Coordinate Transforms (2)

pi-1  =  A-θ Ad  Aa  A-α  pi in homogeneous coordinates
       =  Ai  pi

Ai  = cosθi -sinθi   0  0   1  0  0  ai   1 0 0     0
sinθi cosθi   0  0   0  1  0  0   0  cosαi  -sinαi  0
0 0   1  0   0  0  1  di   0  sinαi  cosαi    0
0 0   0  1   0  0  0  1   0 0 0      1

    =   cosθi -cosαi sinθi sinai sinθi ai cosθi
sinθi cosαi cosθi -sinai cosθi ai sinθi
0 sin αi cosαi di
0 0 0 1

p0  =  A1 ... AN pN world coordinates for point pN in grasper coordinates

Example application: Test whether grasper tip pN does not collide with obstacles



Homogeneous Coordinates

4D notation for 3D coordinates which allows to express nonlinear 3D
transformations as linear 4D transformations.

Normal:  v´= R (v - v0)   rotation + translation
Homogeneous coordinates:  v´ = A v  (note italics for

homogeneous coordinates)

Transition to homogeneous coordinates:
vT = [x y z]   =>   vT = [wx wy wz w]       w ≠ 0  is arbitrary constant

Return to normal coordinates:
1. Divide components 1- 3 by 4th component
2. Omit 4th component

A = R T = r11  r12  r13  0
r21  r22  r23  0
r31  r32  r33  0
0    0    0    1

1   0   0  -x0
0   1   0  -y0
0   0   1  -z0
0   0   0   1



Inverse Kinematics
Given:  
T grasper position and orientation

Wanted:
Ai,  i = 1 .. N joint positions such that    Π   Ai = T

i = 1 .. N

⇒ 12 nonlinear equations for N unknowns

• N ≥ 6 joint variable required for given position (3 degrees of freedom) and
given orientation (3 DoF)

• Nonlinear equation, no guarantee for unique solutions
• Systematic solutions possible but not always practicable (precision, effort)
• Simple solutions for special manipulator geometry



Path Planning (1)

"Collision avoidance", "obstacle avoidance", "piano-movers problem"

How to move an object through an obstacle-crowded space from one point
to another?

A
p1

p2

Example:
Move A from p1 to p2



Path Planning (2)

Basic idea:

1) Determine free-space for
reference point of A
- choose reference point
- determine enlarged obstacles
- examine manipulator workspace

2) Search path for point object
- decompose freespace into free,
  occupied and mixed cells
- search path through free cells,
  decompose mixed cells recursively

A
p1

p2

Q F



Configuration Space

• Transformation of cartesian freespace coordinates into joint positions (C-space)
• C-space has 1 dimension for each DoF of the manipulator
• Mobility of manipulator determines boundaries of C-freespace
• Cartesian obstacles are transformed into C-space obstacles
• Path finding in C-space

Problem:
Transformation of cartesian coordinates into C-space requires inverse Kinematics

Path finding:
Which sequence of joint positions brings reference point of A from start to goal?



Example: 2-Joint Manipulator

Ziel

θ1

θ2

Start

θ2

θ1

θ2

θ1

π

ππ

π

θ2

θ1

Ziel

Start

Boden Kasten

Überlagerung

start goal

ground plane box

superposition

goal
start

Cartesian Space Configuration Space



2D Path-Planning with Rotation

Example of Lozano-Perez: start

goal



Learning Hand-Eye Coordination (1)
Pabon / Gossard: Connectionist Networks for Learning Coordinated Motion in Autonomous Systems AAAI-88

eye
position

head
position

retina

coding of 
eye position

Neural Net

coding of
head position

joint positions

Learning the inverse kinematics of
a 2-joint arm by observing a goal
by a movable sensor

goal

planar
2-joint
arm

movable sensor
- 2 DoF translation
- 2 DoF rotation



Learning Hand-Eye Coordination (2)

retina

minimize excentricity of retina

eye
position
code

eye
invariant
retina

eye
positioning

head and
eye invariant
retina

head
positioning

head
position
code

minimize excentricity of eye position

arm
positioning

Each building block is
a 2-layer feed-forward
network

minimize difference between
hand position and goal



The Problem of Robot Localization

Given a map of the environment, how can a robot determine its pose
(planar coordinates + orientation)?
Two sources of uncertainty:
- observations depend probabilistically on robot pose
- pose changes depend probabilistically on robot actions

Example:
Uncertainty of robot position
after travelling along red path
( shaded area indicates
probability distribution)

Slides on Robot Localization are partly adapted from
Sebastian Thrun, http://www-2.cs.cmu.edu/~thrun/papers/thrun.probrob.html
Michael Beetz, http://wwwradig.in.tum.de/vorlesungen/as.SS03/folien_links.html



Formalization of Localization Problem
m model of environment (e.g. map)
st pose at time t
ot observation at time t
at action at time t
d0...t = o0, a0, o1, a1, ... , ot, at 

observation and action data up to t

Task:  Estimate p(st | d0...t, m) = bt(st)  "robot´s belief state at time t"

Markov properties:
• Current observation depends only on current pose
• Next pose depends only on current pose and current action

"Future is independent of past given current state" 

Markov assumption implies static environment!
(Violation, for example, by robot actions changing the environment)



Structure of Probabilistic Localization

S1 S2 S3 St• • •

o1 o2 o3 ot• • •

a1 a2 a3 at-1• • •

mmap

observations

poses

actions



Recursive Markov Localization
bt(st) = p(st | o0, a0, o1, a1, ... , at-1, ot, m)

= αt p(ot | o0, a0, ... , at-1, st, m)  p(st | o0, a0, ... , at-1, m)
= αt p(ot | st, m)  p(st | o0, a0, ... , at-1, m)

= αt p(ot | st, m) ∫  p(st | o0, a0, ... , at-1, st-1, m)  p(st-1 | o0, a0, ... , at-1, m) dst-1

= αt p(ot | st, m) ∫  p(st |  at-1, st-1, m)  p(st-1 | o0, a0, ... , at-1, m) dst-1

= αt p(ot | st, m) ∫  p(st |  at-1, st-1, m)  bt-1(st-1) dst-1

αt is normalizing factor

Bayes

Markov

Total Prob.

Markov

bt(st)  =  αt p(ot | st, m) ∫  p(st | at-1, st-1, m)  bt-1(st-1) dst-1

p(ot | st, m) probabilistic perceptual model -
often time-invariant:  p(o | s, m)

p(st |  at-1, st-1, m) probabilistic motion model -
often time-invariant:  p(s´| a, s, m)

must be specified for a
specific robot and a
specific environment



Probabilistic Sensor Model for
Laser Range Finder

100                   200                 300                   400                    500

0.125

0.1

0.075

0.05

0.025

0

expected distance

measured distance o [cm]

probability p(o | s)

Adapted from: Sebastian Thrun, Probabilistic Algorithms in Robotics
http://www-2.cs.cmu.edu/~thrun/papers/thrun.probrob.html

sensor properties can
often be approximated
by Gaussian mixture
densities



Grid-based Markov Localization
(Example 1)

•
•
••

robot path with 4
reference poses,
initially belief is

equally distributed

distribution of
belief at second

pose

distribution of
belief at third

pose

distribution of
belief at fourth

pose

Ambiguous localizations due to a repetitive and symmetric environment are
sharpened and disambiguated after several observations.



Grid-based Markov Localization
 (Example 2)

map and robot path maximum position
probabilities after 6 steps

maximum position
probabilities after 12 steps

[Burgard et al. 96]



Approximating Probabilistic Update
by Monte Carlo Localization (MCL)

"Importance Sampling"
"Particle Filters"
"Condensation Algorithm"

different names for a method to approximate
a probability density by discrete samples
(see slide "Sampling Methods")

Approximate implementation of belief update equation
bt(st)  =  αt p(ot | st, m) ∫  p(st | at-1, st-1, m)  bt-1(st-1) dst-1

1. Draw a sample st-1 from the current belief bt-1(st-1) with a likelihood given by the
importance factors of the belief bt-1(st-1).

2. For this st-1 guess a successor pose st according to the distribution p(st | at-1, st-1, m).
3. Assign a preliminary importance factor p(ot | st, m) to this sample and assign it to the

new sample representing bt(st).
4. Repeat  Step 1 through 3 m times. Finally, normalize the importance factors in the

new sample set bt(st) so that they add up to 1.

MCL is very effective and can give good results with as few as 100 samples.



Simultaneous Localization
and Mapping (SLAM)

Typical problem for a mobile robot in an unknown environment:
•  learn the environment ("mapping")
•  keep track of position and orientation ("localization")

"Chicken-and-egg" problem:
•  robot needs knowledge of environment in order to interpret sensor

readings for localization
• robot needs pose knowledge in order to interpret sensor readings for

mapping

Make the environment a multidimensional probabilistic variable!

Example:  Model of environment is a probabilistic occupancy grid

Pij =  eij (xi, yi)  is empty
1-eij   (xi, yi)  is occupied



Bayes Filter for SLAM
Extend the localization approach to simultaneous mapping:

bt(st)  =  αt p(ot | st, m) ∫  p(st | at-1, st-1, m)  bt-1(st-1) dst-1

bt(st, mt)  =  αt p(ot | st, mt) ∫∫  p(st, mt | at-1, st-1, mt-1)  bt-1(st-1, mt-1)  dst-1 dmt-1

Assuming a time-invariant map and map-independent motion:

bt(st, m)  =  αt p(ot | st, m) ∫  p(st | at-1, st-1)  bt-1(st-1, m) dst-1

bt(st, m) is (N+3)-dimensional with N variables for m (N >> 1000) and 3 for st  
=>  complexity problem 

Important approaches to cope with this complexity:
• Kalman filtering (Gaussian probabilities and linear updating)
• estimating only the mode of the posterior, argmaxm b(m)
• treating the robot path as "missing variables" in Expectation Maximization



Kalman Filter for SLAM Problems (1)

Basic Kalman Filter assumptions:
1. Next-state function is linear with added Gaussian noise
2. Perceptual model is linear with added Gaussian noise
3. Initial uncertainty is Gaussian

Ad 1)  Next state in SLAM is pose st and model m.
•  m is assumed constant
•  st is non-linear in general, approximately linear in a first-degree
   Taylor series expansion ("Extended Kalman Filtering")
Let xt be the state variable (st, m) and εcontrol Gaussian noise with
covariance Σcontrol, then

p(xt | at-1, xt-1) = A xt-1 + B at-1 + εcontrol

Ad 2) Sensor measurements are usually nonlinear in robotics, with non-
white Gaussian noise. Approximation by first-degree Taylor series
and εmeasure Gaussian noise with covariance Σmeasure.

p(ot | xt) = C xt + εmeasure



Kalman Filter for SLAM Problems (2)

Bayes Filter equation  
bt(st, m)  =  αt p(ot | st, m) ∫  p(st, mt | at-1, st-1, m)  bt-1(st-1, m) dst-1 

can be rewritten using the standard Kalman Filter equations:  
µt-1 = µt-1 + B at

Σ´t-1 = Σt-1 + Σcontrol

Kt = Σ´t-1 CT  (CΣ´t-1CT + Σmeasure)-1

µt = µ´t-1 + Kt (ot-1 - Cµ´t-1)
Σt = (I - Kt C) Σ´t-1

Compare with slides on Kalman Filtering in "Bildverarbeitung".

• Kalman Filtering estimates the full posterior distribution for all poses
(not only the maximum)

• Guaranteed convergence to true map and robot pose
• Gaussian sensor noise is a bad model for correspondence problems



Example: Underwater Sonic Mapping
From: S.Williams, G. Dissanayake, and H.F. Durrant-Whyte. Towards terrain-aided
navigation for underwater robotics. Advanced Robotics, 15(5), 2001.

Kalman Filter map and
pose estimation

Figure shows:
•  estimated path of
underwater vehicle with
ellipses indicating position
uncertainty
•  14 landmarks obtained
by sonar measurements
with ellipses indicating
uncertainty, 5 artificial
landmarks, the rest other
reflective objects
•  additional dots for weak
landmark hypotheses



Solving the Correspondence Problem

Map obtained from raw sensory
data of a cyclic environment
(large hall of a museum) based
on robot´s odometry
correspondence problem!

Map obtained by EM algorithm:
Iterative maximization of both
robot path and model
non-incremental procedure!



Mapping with Expectation Maximization
Principle of EM mapping algorithm:

Repeat until no more changes
E-step: Estimate robot poses for given map
M-step: Calculate most likely map given poses

The algorithm computes the maximum of the expectation of the joint log
likelihood of the data dt = {a0, o0, ... , at, ot} and the robot´s path st = {s0, ... , st}.

€ 

m i+1[ ] = argmax
m

Est log p d
t ,st |m( ) |m i[ ] ,dt[ ]

€ 

m i+1[ ] = argmax
m

p sτ | m i[ ] ,dt( ) logp(oτ | sτ ,m) dsτ∫
τ

∑

E-step: Compute the posterior of pose sτ based on m[i] and all data
including t > τ :   =>   different from incremental localization

M-step: Maximize log p(oτ | sτ, m) for all τ and all poses st under the
expectation calculated in the E-step



Mapping with Incremental 
Maximum-Likelihood Estimation

Stepwise maximum-likelihood estimation of map and pose is inferior to
Kalman Filtering and EM estimation, but less complex.

Obtain series of maximum-likelihood maps and poses
m1*, m2*, ...
s1*, s2*, ...

by maximizing the marginal likelihood:
<mt*, st*> = argmax p(ot | mt, st) p(mt, st | at, st-1*, mt-1*)mt, st

This equation follows from the Bayes Filter equation by assuming that
map and pose at t-1 are known for certain.

• real-time computation possible
• unable to handle cycles



Example of Incremental
Maximum-Likelihood Mapping

At every time step, the map is grown by finding the most likely continuation.
Map estimates do not converge as robot completes cycle because of
accumulated pose estimation error.

Examples from: Sebastian Thrun, Probabilistic Algorithms in Robotics
http://www-2.cs.cmu.edu/~thrun/papers/thrun.probrob.html



Maintaining a Pose Posterior
Distribution

p(st | ot, at )  =  α p(ot | st) ∫  p(st | at-1, st-1)  p(st-1 | ot-1, at-1 ) dst-1

Problems with cyclic environment can be overcome by maintaining not
only the maximum-likelihood pose estimate at t-1 but also the uncertainty
distribution using Bayes Filter:

Last example repeated, representing the pose posterior by particles.
Uncertainty is transferred onto map, so major corrections remain possible.


