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Representation and Reasoning System

A Representation and Reasoning System (RRS) is made up of:

➤ formal language: specifies the legal sentences

➤ semantics: specifies the meaning of the symbols

➤ reasoning theory or proof procedure: nondeterministic

specification of how an answer can be produced.
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Implementation of an RRS

An implementation of an RRS consists of

➤ language parser: maps sentences of the language into

data structures.

➤ reasoning procedure: implementation of reasoning

theory + search strategy.

Note: the semantics aren’t reflected in the implementation!

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

3

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 1, Page 3

Using an RRS

1. Begin with a task domain.

2. Distinguish those things you want to talk about (the

ontology).

3. Choose symbols in the computer to denote objects and

relations.

4. Tell the system knowledge about the domain.

5. Ask the system questions.
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Role of Semantics in an RRS

in(alan,cs_building)

in(alan,r123).
part_of(r123,cs_building).
in(X,Y) ←
    part_of(Z,Y) ∧
    in(X,Z).

alan
r123
r023

cs_building

in( , )
part_of( , )

person( )
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Simplifying Assumptions of Initial RRS

An agent’s knowledge can be usefully described in terms of

individuals and relations among individuals.

An agent’s knowledge base consists of definite and positive

statements.

The environment is static.

There are only a finite number of individuals of interest in the

domain. Each individual can be given a unique name.

�⇒ Datalog
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Syntax of Datalog

variable starts with upper-case letter.

constant starts with lower-case letter or is a sequence of

digits (numeral).

predicate symbol starts with lower-case letter.

term is either a variable or a constant.

atomic symbol (atom) is of the form p or p(t1, . . . , tn) where

p is a predicate symbol and ti are terms.
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Syntax of Datalog (cont)

definite clause is either an atomic symbol (a fact) or of the

form:

a
︸︷︷︸

← b1 ∧ · · · ∧ bm
︸ ︷︷ ︸

head body

where a and bi are atomic symbols.

query is of the form ?b1 ∧ · · · ∧ bm.

knowledge base is a set of definite clauses.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

8

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 1, Page 8

Example Knowledge Base

in(alan, R) ←
teaches(alan, cs322) ∧
in(cs322, R).

grandfather(william, X) ←
father(william, Y) ∧
parent(Y , X).

slithy(toves) ←
mimsy ∧ borogroves ∧
outgrabe(mome, Raths).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Lattice of sublogics

propositional database

propositional-definite2-CNF

3-CNF

polynomial

NP-hard

datalog

propositional clauses

propositional calculus

function-free FOPC

decidable

undecidable +
Turing equivalent

FOPC

clausal form

Horn clauses

definite clauses
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Characteristics of sublogics
• FOPC first-order predicate calculus
• clausal form conjunctions of disjunctions of literals (CNF)
• Horn clauses definite clauses and integrity contraints
• definite clauses clauses with function symbols
• function-free FOPC FOPC without functions or existentially quantified 

variables in the scope of universally quantified variables
• datalog definite clauses without function symbols
• propositional calculus FOPC without variables or function symbols
• propositional clauses clausal form without variables or function symbols
• 3-CNF propositional clauses with at most 3 disjuncts in a clause
• 2-CNF propositional clauses with at most 2 disjuncts in a clause
• propositional definite definite clauses without variables or function symbols
• propositional database facts without variables or function symbols (no rules)
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Semantics: General Idea

A semanticsspecifies the meaning of sentences in the

language.

An interpretationspecifies:

➤ what objects (individuals) are in the world

➤ the correspondence between symbols in the computer

and objects & relations in world

➣ constants denote individuals

➣ predicate symbols denote relations

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Formal Semantics

An interpretationis a tripleI = 〈D, φ, π〉, where

➤ D, the domain, is a nonempty set. Elements ofD are

individuals.

➤ φ is a mapping that assigns to each constant an element

of D. Constantc denotesindividualφ(c).

➤ π is a mapping that assigns to eachn-ary predicate

symbol a relation: a function fromDn into {TRUE, FALSE}.
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Example Interpretation

Constants:phone, pencil, telephone.

Predicate Symbol:noisy(unary),left_of (binary).

➤ D = {✂,☎,✎}.
➤ φ(phone) = ☎, φ(pencil) = ✎, φ(telephone) = ☎.

➤ π(noisy): 〈✂〉 FALSE 〈☎〉 TRUE 〈✎〉 FALSE

π(left_of ):

〈✂,✂〉 FALSE 〈✂,☎〉 TRUE 〈✂,✎〉 TRUE

〈☎,✂〉 FALSE 〈☎,☎〉 FALSE 〈☎,✎〉 TRUE

〈✎,✂〉 FALSE 〈✎,☎〉 FALSE 〈✎,✎〉 FALSE
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Important points to note

➤ The domainD can contain real objects. (e.g., a person, a

room, a course).D can’t necessarily be stored in a

computer.

➤ π(p) specifies whether the relation denoted by then-ary

predicate symbolp is true or false for eachn-tuple of

individuals.

➤ If predicate symbolp has no arguments, thenπ(p) is

eitherTRUEor FALSE.
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☞

☞

☞

15

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 2, Page 5

Truth in an interpretation

A constantc denotes inI the individualφ(c).

Ground (variable-free) atomp(t1, . . . , tn) is

➤ true in interpretationI if π(p)(t′1, . . . , t′n) = TRUE, where

ti denotest′i in interpretationI and

➤ false in interpretationI if π(p)(t′1, . . . , t′n) = FALSE.

Ground clauseh ← b1 ∧ . . . ∧ bm is false in interpretationI

if h is false inI and eachbi is true inI , and is

true in interpretationI otherwise.
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Example Truths
In the interpretation given before:

noisy(phone) true

noisy(telephone) true

noisy(pencil) false

left_of (phone, pencil) true

left_of (phone, telephone) false

noisy(pencil) ← left_of (phone, telephone) true

noisy(pencil) ← left_of (phone, pencil) false

noisy(phone) ← noisy(telephone) ∧ noisy(pencil) true

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Models and logical consequences

➤ A knowledge base,KB, is true in interpretationI if and

only if every clause inKB is true inI .

➤ A model of a set of clauses is an interpretation in which

all the clauses are true.

➤ If KB is a set of clauses andg is a conjunction of atoms,

g is a logical consequenceof KB, written KB |= g, if g

is true in every model ofKB.

➤ That is,KB |= g if there is no interpretation in whichKB

is true andg is false.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Simple Example

KB =




p ← q.

q.

r ← s.

π(p) π(q) π(r) π(s)
I1 TRUE TRUE TRUE TRUE is a model ofKB
I2 FALSE FALSE FALSE FALSE not a model ofKB
I3 TRUE TRUE FALSE FALSE is a model ofKB
I4 TRUE TRUE TRUE FALSE is a model ofKB
I5 TRUE TRUE FALSE TRUE not a model ofKB

KB |= p, KB |= q, KB 6|= r , KB 6|= s

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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User’s view of Semantics
1. Choose a task domain:intended interpretation.

2. Associate constants with individuals you want to name.

3. For each relation you want to represent, associate a

predicate symbol in the language.

4. Tell the system clauses that are true in the intended

interpretation: axiomatizing the domain.

5. Ask questions about the intended interpretation.

6. If KB |= g, theng must be true in the intended

interpretation.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Computer’s view of semantics

➤ The computer doesn’t have access to the intended

interpretation.

➤ All it knows is the knowledge base.

➤ The computer can determine if a formula is a logical

consequence of KB.

➤ If KB |= g theng must be true in the intended

interpretation.

➤ If KB 6|= g then there is a model ofKB in whichg is

false. This could be the intended interpretation.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Variables

➤ Variables are universally quantified in the scope of a

clause.

➤ A variable assignment is a function from variables into

the domain.

➤ Given an interpretation and a variable assignment,

each term denotes an individual and

each clause is either true or false.

➤ A clause containing variables is true in an interpretation

if it is true for all variable assignments.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Queries and Answers

A query is a way to ask if a body is a logical consequence of

the knowledge base:

?b1 ∧ · · · ∧ bm.

An answer is either

➤ an instance of the query that is a logical consequence of

the knowledge base KB, or

➤ no if no instance is a logical consequence of KB.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Example Queries

KB =











in(alan, r123).

part_of (r123, cs_building).

in(X, Y) ← part_of (Z, Y) ∧ in(X, Z).

Query Answer

?part_of (r123, B). part_of (r123, cs_building)

?part_of (r023, cs_building). no

?in(alan, r023). no

?in(alan, B). in(alan, r123)

in(alan, cs_building)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Logical Consequence

Atom g is a logical consequence of KB if and only if:

➤ g is a fact in KB, or

➤ there is a rule

g ← b1 ∧ . . . ∧ bk

in KB such that each bi is a logical consequence of KB.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Debugging false conclusions

To debug answer g that is false in the intended interpretation:

➤ If g is a fact in KB, this fact is wrong.

➤ Otherwise, suppose g was proved using the rule:

g ← b1 ∧ . . . ∧ bk

where each bi is a logical consequence of KB.

➣ If each bi is true in the intended interpretation, this

clause is false in the intended interpretation.

➣ If some bi is false in the intended interpretation,

debug bi.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Electrical Environment

light

two-way
switch

switch

off

on

power
outlet

circuit
breaker

outside power

l1

l2

w1

w0

w2

w4

w3

w6

w5

p2

p1

cb2

cb1

s1

s2

s3
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Axiomatizing the Electrical Environment

% light(L) is true if L is a light

light(l1). light(l2).

% down(S) is true if switch S is down

down(s1). up(s2). up(s3).

% ok(D) is true if D is not broken

ok(l1). ok(l2). ok(cb1). ok(cb2).

?light(l1). �⇒ yes

?light(l6). �⇒ no

?up(X). �⇒ up(s2), up(s3)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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connected_to(X, Y) is true if component X is connected to Y

connected_to(w0, w1) ← up(s2).

connected_to(w0, w2) ← down(s2).

connected_to(w1, w3) ← up(s1).

connected_to(w2, w3) ← down(s1).

connected_to(w4, w3) ← up(s3).

connected_to(p1, w3).

?connected_to(w0, W). �⇒ W = w1

?connected_to(w1, W). �⇒ no

?connected_to(Y , w3). �⇒ Y = w2, Y = w4, Y = p1

?connected_to(X, W). �⇒ X = w0, W = w1, …

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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% lit(L) is true if the light L is lit

lit(L) ← light(L) ∧ ok(L) ∧ live(L).

% live(C) is true if there is power coming into C

live(Y) ←
connected_to(Y , Z) ∧
live(Z).

live(outside).

This is a recursive definition of live.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Recursion and Mathematical Induction

above(X, Y) ← on(X, Y).

above(X, Y) ← on(X, Z) ∧ above(Z, Y).

This can be seen as:

➤ Recursive definition of above: prove above in terms of a

base case (on) or a simpler instance of itself; or

➤ Way to prove above by mathematical induction: the base

case is when there are no blocks between X and Y , and if

you can prove above when there are n blocks between

them, you can prove it when there are n + 1 blocks.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Limitations
Suppose you had a database using the relation:

enrolled(S, C)

which is true when student S is enrolled in course C.

You can’t define the relation:

empty_course(C)

which is true when course C has no students enrolled in it.

This is because empty_course(C) doesn’t logically follow

from a set of enrolled relations. There are always models

where someone is enrolled in a course!

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Proofs

➤ A proof is a mechanically derivable demonstration that

a formula logically follows from a knowledge base.

➤ Given a proof procedure,KB � g meansg can be

derived from knowledge baseKB.

➤ Recall KB |= g meansg is true in all models ofKB.

➤ A proof procedure issound if KB � g impliesKB |= g.

➤ A proof procedure iscomplete if KB |= g implies

KB � g.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002
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Bottom-up Ground Proof Procedure

One rule of derivation,a generalized form ofmodus ponens:

If “ h ← b1 ∧ . . . ∧ bm” is a clause in the knowledge

base, and eachbi has been derived, thenh can be

derived.

You are forward chainingon this clause.

(This rule also covers the case whenm = 0.)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002
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Bottom-up proof procedure

KB � g if g ∈ C at the end of this procedure:

C := {};
repeat

select clause “h ← b1 ∧ . . . ∧ bm” in KB such that

bi ∈ C for all i, and

h /∈ C;
C := C ∪ {h}

until no more clauses can be selected.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002
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Example

a ← b ∧ c.

a ← e ∧ f .

b ← f ∧ k.

c ← e.

d ← k.

e.

f ← j ∧ e.

f ← c.

j ← c.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002
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Soundness of bottom-up proof procedure

If KB � g thenKB |= g.

Suppose there is ag such thatKB � g andKB �|= g.

Let h be the first atom added toC that’s not true in every

model ofKB. Supposeh isn’t true in modelI of KB.

There must be a clause inKB of form

h ← b1 ∧ . . . ∧ bm

Eachbi is true inI. h is false inI. So this clause is false inI.

ThereforeI isn’t a model ofKB.

Contradiction: thus no suchg exists.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002
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Fixed Point

TheC generated at the end of the bottom-up algorithm is

called a fixed point.

Let I be the interpretation in which every element of the fixed

point is true and every other atom is false.

I is a model ofKB.

Proof: supposeh ← b1 ∧ . . . ∧ bm in KB is false inI. Thenh

is false and eachbi is true inI. Thush can be added toC.

Contradiction toC being the fixed point.

I is called aMinimal Model.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

38

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 2, Lecture 4, Page 7

Completeness

If KB |= g thenKB � g.

SupposeKB |= g. Theng is true in all models ofKB.

Thusg is true in the minimal model.

Thusg is generated by the bottom up algorithm.

ThusKB � g.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002
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Top-down Ground Proof Procedure
Idea: search backward from a query to determine if it is a

logical consequence ofKB.

An answer clauseis of the form:

yes ← a1 ∧ a2 ∧ . . . ∧ am

The SLD Resolutionof this answer clause on atomai with

the clause:

ai ← b1 ∧ . . . ∧ bp

is the answer clause

yes ← a1∧· · ·∧ai−1 ∧ b1∧ · · · ∧bp ∧ ai+1∧ · · · ∧am.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002
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Derivations

➤ An answer is an answer clause withm = 0. That is, it is

the answer clauseyes ← .

➤ A derivation of query “?q1 ∧ . . . ∧ qk” from KB is a

sequence of answer clausesγ0, γ1, . . . , γn such that

➣ γ0 is the answer clauseyes ← q1 ∧ . . . ∧ qk,

➣ γi is obtained by resolvingγi−1 with a clause inKB,

and

➣ γn is an answer.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002
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Top-down definite clause interpreter

To solve the query ?q1 ∧ . . . ∧ qk:

ac := “yes ← q1 ∧ . . . ∧ qk”

repeat

select a conjunctai from the body ofac;

choose clauseC from KB with ai as head;

replaceai in the body ofac by the body ofC

until ac is an answer.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002
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Nondeterministic Choice

➤ Don’t-care nondeterminismIf one selection doesn’t

lead to a solution, there is no point trying other

alternatives.select

➤ Don’t-know nondeterminismIf one choice doesn’t lead

to a solution, other choices may.choose

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002
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Example: successful derivation

a ← b ∧ c. a ← e ∧ f . b ← f ∧ k.

c ← e. d ← k. e.

f ← j ∧ e. f ← c. j ← c.

Query: ?a

γ0 : yes ← a γ4 : yes ← e

γ1 : yes ← e ∧ f γ5 : yes ←
γ2 : yes ← f

γ3 : yes ← c

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002
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Example: failing derivation

a ← b ∧ c. a ← e ∧ f . b ← f ∧ k.

c ← e. d ← k. e.

f ← j ∧ e. f ← c. j ← c.

Query: ?a

γ0 : yes ← a γ4 : yes ← e ∧ k ∧ c

γ1 : yes ← b ∧ c γ5 : yes ← k ∧ c

γ2 : yes ← f ∧ k ∧ c

γ3 : yes ← c ∧ k ∧ c
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Reasoning with Variables

➤ An instanceof an atom or a clause is obtained by

uniformly substituting terms for variables.

➤ A substitution is a finite set of the form

{V1/t1, . . . , Vn/tn}, where eachVi is a distinct variable

and eachti is a term.

➤ The application of a substitution

σ = {V1/t1, . . . , Vn/tn} to an atom or clausee, written

eσ , is the instance ofewith every occurrence ofVi

replaced byti .
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Application Examples
The following are substitutions:

➤ σ1 = {X/A, Y/b, Z/C, D/e}
➤ σ2 = {A/X, Y/b, C/Z, D/e}
➤ σ3 = {A/V, X/V, Y/b, C/W, Z/W, D/e}
The following shows some applications:

➤ p(A, b, C, D)σ1 = p(A, b, C, e)

➤ p(X, Y, Z, e)σ1 = p(A, b, C, e)

➤ p(A, b, C, D)σ2 = p(X, b, Z, e)

➤ p(X, Y, Z, e)σ2 = p(X, b, Z, e)

➤ p(A, b, C, D)σ3 = p(V, b, W, e)

➤ p(X, Y, Z, e)σ3 = p(V, b, W, e)
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Unifiers

➤ Substitutionσ is a unifier of e1 ande2 if e1σ = e2σ .

➤ Substitutionσ is a most general unifier(mgu) ofe1 and

e2 if

➣ σ is a unifier ofe1 ande2; and

➣ if substitutionσ ′ also unifiese1 ande2, theneσ ′ is an

instance ofeσ for all atomse.

➤ If two atoms have a unifier, they have a most general

unifier.
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Unification Example
p(A, b, C, D) andp(X, Y, Z, e) have as unifiers:
➤ σ1 = {X/A, Y/b, Z/C, D/e}
➤ σ2 = {A/X, Y/b, C/Z, D/e}
➤ σ3 = {A/V, X/V, Y/b, C/W, Z/W, D/e}
➤ σ4 = {A/a, X/a, Y/b, C/c, Z/c, D/e}
➤ σ5 = {X/A, Y/b, Z/A, C/A, D/e}
➤ σ6 = {X/A, Y/b, Z/C, D/e, W/a}
The first three are most general unifiers.

The following substitutions are not unifiers:
➤ σ7 = {Y/b, D/e}
➤ σ8 = {X/a, Y/b, Z/c, D/e}
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Bottom-up procedure

➤ You can carry out the bottom-up procedure on the ground

instances of the clauses.

➤ Soundness is a direct corollary of the ground soundness.

➤ For completeness, we build a canonical minimal model.

We need a denotation for constants:

Herbrand interpretation:The domain is the set of

constants (we invent one if the KB or query doesn’t

contain one). Each constant denotes itself.
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Definite Resolution with Variables
A generalized answer clauseis of the form

yes(t1, . . . , tk) ← a1 ∧ a2 ∧ . . . ∧ am,

wheret1, . . . , tk are terms anda1, . . . , am are atoms.

The SLD resolutionof this generalized answer clause onai

with the clause

a ← b1 ∧ . . . ∧ bp,

whereai anda have most general unifierθ , is

(yes(t1, . . . , tk) ←
a1∧ . . .∧ai−1 ∧ b1∧ . . .∧bp ∧ ai+1∧ . . .∧am)θ.
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To solve query ?B with variablesV1, . . . , Vk:

Setac to generalized answer clauseyes(V1, . . . , Vk) ← B;

While ac is not an answer do

Supposeac is yes(t1, . . . , tk) ← a1 ∧ a2 ∧ . . . ∧ am

Select atomai in the body ofac;

Choose clausea ← b1 ∧ . . . ∧ bp in KB;

Rename all variables ina ← b1 ∧ . . . ∧ bp;

Let θ be the most general unifier ofai anda.

Fail if they don’t unify;

Setac to (yes(t1, . . . , tk) ← a1 ∧ . . . ∧ ai−1∧
b1 ∧ . . . ∧ bp ∧ ai+1 ∧ . . . ∧ am)θ

end while.
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Example

live(Y) ← connected_to(Y, Z) ∧ live(Z). live(outside).

connected_to(w6, w5). connected_to(w5, outside).

?live(A).

yes(A) ← live(A).

yes(A) ← connected_to(A, Z1) ∧ live(Z1).

yes(w6) ← live(w5).

yes(w6) ← connected_to(w5, Z2) ∧ live(Z2).

yes(w6) ← live(outside).

yes(w6) ← .
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Function Symbols

Often we want to refer to individuals in terms of components.

Examples: 4:55 p.m. English sentences. A classlist.

We extend the notion ofterm. So that a term can be

f (t1, . . . , tn) wheref is a function symboland theti are

terms.

In an interpretation and with a variable assignment, term

f (t1, . . . , tn) denotes an individual in the domain.

With one function symbol and one constant we can refer to

infinitely many individuals.
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Lists
A list is an ordered sequence of elements.

Let’s use the constantnil to denote the empty list, and the
function cons(H, T) to denote the list with first elementH

and rest-of-listT. These are not built-in.

The list containingdavid, alan andrandy is

cons(david, cons(alan, cons(randy, nil)))

append(X, Y, Z) is true if listZ contains the elements ofX

followed by the elements ofY

append(nil, Z, Z).

append(cons(A, X), Y, cons(A, Z))← append(X, Y, Z).
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