Contents Chapters 2 & 3

Chapters 2 & 3: A Representation and Reasoning System

- Lecture 1 Representation and Reasoning Systems. Datalog.
- Lecture 2 Semantics.
- Lecture 3 Variables, queries and answers, limitations.
- Lecture 4 Proofs. Soundness and completeness.
- Lecture 5 SLD resolution.
- Lecture 6 Proofs with variables. Function Symbols.

Representation and Reasoning System

- A Representation and Reasoning System (RRS) is made up of:
 - formal language: specifies the legal sentences
 - semantics: specifies the meaning of the symbols
 - reasoning theory or proof procedure: nondeterministic specification of how an answer can be produced.

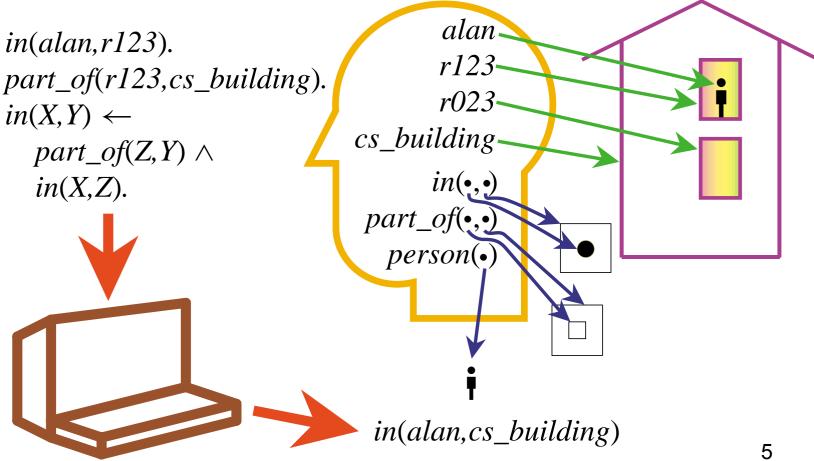
Implementation of an RRS

An implementation of an RRS consists of

- language parser: maps sentences of the language into data structures.
- reasoning procedure: implementation of reasoning theory + search strategy.
- Note: the semantics aren't reflected in the implementation!

- 1. Begin with a task domain.
- 2. Distinguish those things you want to talk about (the ontology).
- 3. Choose symbols in the computer to denote objects and relations.
- 4. Tell the system knowledge about the domain.
- 5. Ask the system questions.

Role of Semantics in an RRS



Simplifying Assumptions of Initial RRS

- An agent's knowledge can be usefully described in terms of *individuals* and *relations* among individuals.
- An agent's knowledge base consists of *definite* and *positive* statements.
- The environment is *static*.
- There are only a finite number of individuals of interest in the domain. Each individual can be given a unique name.
- \implies Datalog

variable starts with upper-case letter.

constant starts with lower-case letter or is a sequence of digits (numeral).

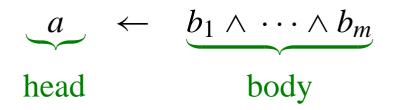
predicate symbol starts with lower-case letter.

term is either a variable or a constant.

atomic symbol (atom) is of the form p or $p(t_1, ..., t_n)$ where p is a predicate symbol and t_i are terms.

Syntax of Datalog (cont)

definite clause is either an atomic symbol (a fact) or of the form:



where a and b_i are atomic symbols.

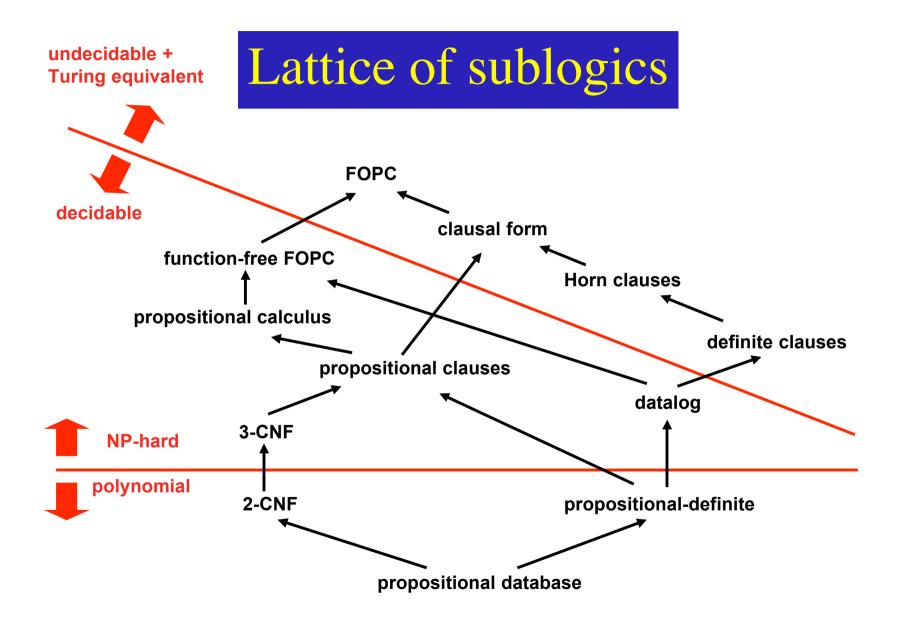
query is of the form $b_1 \wedge \cdots \wedge b_m$.

knowledge base is a set of definite clauses.

Example Knowledge Base

9

 $in(alan, R) \leftarrow$ *teaches*(*alan*, *cs*322) \land in(cs322, R).grandfather(william, X) \leftarrow father(william, Y) \wedge parent(Y, X). $slithy(toves) \leftarrow$ mimsy \land borogroves \land outgrabe(mome, Raths).



Characteristics of sublogics

FOPC first-order predicate calculus clausal form conjunctions of disjunctions of literals (CNF) definite clauses and integrity contraints Horn clauses definite clauses clauses with function symbols **function-free FOPC** FOPC without functions or existentially quantified variables in the scope of universally quantified variables definite clauses without function symbols datalog propositional calculus **FOPC** without variables or function symbols propositional clauses clausal form without variables or function symbols **3-CNF** propositional clauses with at most 3 disjuncts in a clause 2-CNF propositional clauses with at most 2 disjuncts in a clause propositional definite definite clauses without variables or function symbols **propositional database** facts without variables or function symbols (no rules)

Semantics: General Idea

- A semantics specifies the meaning of sentences in the language.
- An interpretation specifies:
- > what objects (individuals) are in the world
 - the correspondence between symbols in the computer and objects & relations in world
 - > constants denote individuals
 - > predicate symbols denote relations

Formal Semantics

An interpretation is a triple $I = \langle D, \phi, \pi \rangle$, where

D, the domain, is a nonempty set. Elements of D are individuals.

 $\blacktriangleright \phi$ is a mapping that assigns to each constant an element of *D*. Constant *c* denotes individual $\phi(c)$.

> π is a mapping that assigns to each *n*-ary predicate symbol a relation: a function from D^n into {*TRUE*, *FALSE*}.

Example Interpretation

Constants:phone, pencil, telephone.Predicate Symbol:noisy (unary), left_of (binary).

 \blacktriangleright $D = \{ \succeq, \heartsuit, \aleph \}.$ $\blacktriangleright \phi(phone) =$, $\phi(pencil) =$, $\phi(telephone) =$. $> \pi(noisy): | \langle > \rangle _{FALSE} | \langle @ \rangle _{TRUE} | \langle \ \rangle _{FALSE}$ $\pi(left_of)$: $\langle \rangle$, \rangle , \rangle FALSE $|\langle \rangle$, $\langle \rangle$, TRUE $\langle \mathbf{\langle}, \mathbf{\rangle}, \mathbf{\rangle} \rangle \quad FALSE \quad \langle \mathbf{\langle}, \mathbf{\langle}, \mathbf{\rangle} \rangle \quad FALSE \quad \langle \mathbf{\langle}, \mathbf{\rangle} \rangle \\ \langle \mathbf{\langle}, \mathbf{\rangle}, \mathbf{\rangle} \rangle \quad FALSE \quad \langle \mathbf{\langle}, \mathbf{\rangle}, \mathbf{\langle}, \mathbf{\rangle} \rangle \quad FALSE \quad \langle \mathbf{\langle}, \mathbf{\rangle} \rangle$ TRUE FALSE $\langle \mathbb{N}, \mathbb{Q} \rangle$ FALSE $\langle \mathbb{N}, \mathbb{N} \rangle$ FALSE

Important points to note

- The domain D can contain real objects. (e.g., a person, a room, a course). D can't necessarily be stored in a computer.
- π(p) specifies whether the relation denoted by the *n*-ary predicate symbol p is true or false for each n-tuple of individuals.
- For the predicate symbol p has no arguments, then $\pi(p)$ is either *TRUE* or *FALSE*.

Truth in an interpretation

A constant c denotes in I the individual $\phi(c)$.

Ground (variable-free) atom $p(t_1, \ldots, t_n)$ is

true in interpretation *I* if $\pi(p)(t'_1, \ldots, t'_n) = TRUE$, where t_i denotes t'_i in interpretation *I* and

• false in interpretation *I* if $\pi(p)(t'_1, \ldots, t'_n) = FALSE$.

Ground clause $h \leftarrow b_1 \land \ldots \land b_m$ is false in interpretation *I* if *h* is false in *I* and each b_i is true in *I*, and is true in interpretation *I* otherwise.

In the interpretation given before:

noisy(phone)	true
noisy(telephone)	true
noisy(pencil)	false
<i>left_of(phone, pencil)</i>	true
left_of (phone, telephone)	false
$noisy(pencil) \leftarrow left_of(phone, telephone)$	true
$noisy(pencil) \leftarrow left_of(phone, pencil)$	false
$noisy(phone) \leftarrow noisy(telephone) \land noisy(pencil)$	true

Models and logical consequences

- A knowledge base, KB, is true in interpretation I if and only if every clause in KB is true in I.
- A model of a set of clauses is an interpretation in which all the clauses are true.
- ► If *KB* is a set of clauses and *g* is a conjunction of atoms, *g* is a logical consequence of *KB*, written $KB \models g$, if *g* is true in every model of *KB*.
- That is, $KB \models g$ if there is no interpretation in which KB is true and g is false. 18

$$KB = \begin{cases} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{cases}$$

	$\pi(p)$	$\pi(q)$	$\pi(r)$	$\pi(s)$
I_1	TRUE	TRUE	TRUE	TRUE
I_2	FALSE	FALSE	FALSE	FALSE
I_3	TRUE	TRUE	FALSE	FALSE
I_4	TRUE	TRUE	TRUE	FALSE
I_5	TRUE	TRUE	FALSE	TRUE

is a model of KB not a model of KB is a model of KB is a model of *KB* not a model of KB

 $KB \models p, KB \models q, KB \not\models r, KB \not\models s$

- 1. Choose a task domain: intended interpretation.
- 2. Associate constants with individuals you want to name.
- 3. For each relation you want to represent, associate a predicate symbol in the language.
- 4. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
- 5. Ask questions about the intended interpretation.
- 6. If $KB \models g$, then g must be true in the intended interpretation.

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- > All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
- ▶ If $KB \models g$ then g must be true in the intended interpretation.
- ► If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation. ²¹

- Variables are universally quantified in the scope of a clause.
- A variable assignment is a function from variables into the domain.
- Given an interpretation and a variable assignment, each term denotes an individual and each clause is either true or false.
- A clause containing variables is true in an interpretation if it is true for all variable assignments.
 22

Queries and Answers

A query is a way to ask if a body is a logical consequence of the knowledge base:

 $?b_1 \wedge \cdots \wedge b_m.$

An answer is either

an instance of the query that is a logical consequence of the knowledge base KB, or

no if no instance is a logical consequence of *KB*.

Example Queries

$$KB = \begin{cases} in(alan, r123). \\ part_of(r123, cs_building). \\ in(X, Y) \leftarrow part_of(Z, Y) \land in(X, Z). \end{cases}$$
Query Answer
$$?part_of(r123, B). \quad part_of(r123, cs_building) \\ ?part_of(r023, cs_building). \quad no \\ ?in(alan, r023). \quad no \\ ?in(alan, B). \quad in(alan, r123) \\ in(alan, cs_building) \end{cases}$$

Logical Consequence

Atom g is a logical consequence of KB if and only if:

 \triangleright g is a fact in KB, or

there is a rule

 $g \leftarrow b_1 \wedge \ldots \wedge b_k$

in KB such that each b_i is a logical consequence of KB.

Debugging false conclusions

To debug answer *g* that is false in the intended interpretation:

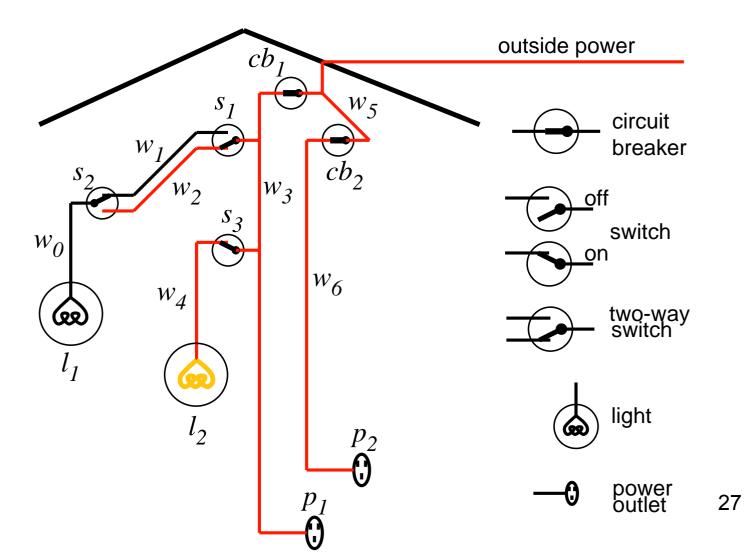
- \blacktriangleright If g is a fact in KB, this fact is wrong.
 - Otherwise, suppose g was proved using the rule:

$$g \leftarrow b_1 \wedge \ldots \wedge b_k$$

where each b_i is a logical consequence of *KB*.

- > If each b_i is true in the intended interpretation, this clause is false in the intended interpretation.
- > If some b_i is false in the intended interpretation, debug b_i .²⁶

Electrical Environment



Axiomatizing the Electrical Environment

% *light(L)* is true if L is a light $light(l_1)$. $light(l_2)$. % down(S) is true if switch S is down $down(s_1)$. $up(s_2)$. $up(s_3)$. % ok(D) is true if D is not broken $ok(l_1)$. $ok(l_2)$. $ok(cb_1)$. $ok(cb_2)$. $?light(l_1). \implies yes$ $?light(l_6). \implies no$ 2up(X). \implies $up(s_2), up(s_3)$

connected_to(X, Y) is true if component X is connected to Y

$$connected_to(w_0, w_1) \leftarrow up(s_2).$$

$$connected_to(w_0, w_2) \leftarrow down(s_2).$$

$$connected_to(w_1, w_3) \leftarrow up(s_1).$$

$$connected_to(w_2, w_3) \leftarrow down(s_1).$$

$$connected_to(w_4, w_3) \leftarrow up(s_3).$$

$$connected_to(p_1, w_3).$$

?connected_to(w_0, W). $\implies W = w_1$

?connected_to(w_1, W). \implies no

?connected_to(Y, w_3). \implies $Y = w_2, Y = w_4, Y = p_1$

?connected_to(X, W). \implies X = w₀, W = w₁, ...

% lit(L) is true if the light L is lit

 $lit(L) \leftarrow light(L) \land ok(L) \land live(L).$

% live(C) is true if there is power coming into C

 $live(Y) \leftarrow$ $connected_to(Y, Z) \land$ live(Z).live(outside).

This is a recursive definition of *live*.

Recursion and Mathematical Induction

 $above(X, Y) \leftarrow on(X, Y).$

 $above(X, Y) \leftarrow on(X, Z) \land above(Z, Y).$

This can be seen as:

Recursive definition of *above*: prove *above* in terms of a base case (*on*) or a simpler instance of itself; or

Way to prove *above* by mathematical induction: the base case is when there are no blocks between *X* and *Y*, and if you can prove *above* when there are *n* blocks between them, you can prove it when there are n + 1 blocks.³¹

Suppose you had a database using the relation: enrolled(S, C)

- which is true when student S is enrolled in course C.
- You can't define the relation:

 $empty_course(C)$

- which is true when course C has no students enrolled in it.
- This is because $empty_course(C)$ doesn't logically follow from a set of *enrolled* relations. There are always models₃₂ where someone is enrolled in a course!

A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.

► Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.

Recall $KB \models g$ means g is true in all models of KB.

A proof procedure is sound if KB ⊢ g implies KB ⊨ g.
A proof procedure is complete if KB ⊨ g implies KB ⊢ g.

Bottom-up Ground Proof Procedure

One rule of derivation, a generalized form of *modus ponens*:

If " $h \leftarrow b_1 \land \ldots \land b_m$ " is a clause in the knowledge base, and each b_i has been derived, then h can be derived.

You are forward chaining on this clause.

(This rule also covers the case when m = 0.)

Bottom-up proof procedure

 $KB \vdash g$ if $g \in C$ at the end of this procedure:

- $C := \{\};$
- repeat

select clause " $h \leftarrow b_1 \land \ldots \land b_m$ " in *KB* such that $b_i \in C$ for all *i*, and $h \notin C$; $C := C \cup \{h\}$

until no more clauses can be selected.

 $a \leftarrow b \wedge c$. $a \leftarrow e \wedge f$. $b \leftarrow f \wedge k$. $c \leftarrow e$. $d \leftarrow k$. е. $f \leftarrow j \wedge e$. $f \leftarrow c$. $j \leftarrow c$.

Soundness of bottom-up proof procedure

If $KB \vdash g$ then $KB \models g$.

Suppose there is a *g* such that $KB \vdash g$ and $KB \not\models g$.

Let *h* be the first atom added to *C* that's not true in every model of *KB*. Suppose *h* isn't true in model *I* of *KB*. There must be a clause in *KB* of form

 $h \leftarrow b_1 \wedge \ldots \wedge b_m$

Each b_i is true in *I*. *h* is false in *I*. So this clause is false in *I*. Therefore *I* isn't a model of *KB*.

Contradiction: thus no such g exists.

- The C generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.
- I is a model of KB.
- Proof: suppose $h \leftarrow b_1 \land \ldots \land b_m$ in *KB* is false in *I*. Then *h*
- is false and each b_i is true in *I*. Thus *h* can be added to *C*.
- Contradiction to *C* being the fixed point.
- *I* is called a Minimal Model.

Completeness

- If $KB \models g$ then $KB \vdash g$.
- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus *g* is true in the minimal model.
- Thus *g* is generated by the bottom up algorithm. Thus $KB \vdash g$.

Top-down Ground Proof Procedure

- Idea: search backward from a query to determine if it is a logical consequence of *KB*.
- An answer clause is of the form:

 $yes \leftarrow a_1 \land a_2 \land \ldots \land a_m$

The SLD Resolution of this answer clause on atom a_i with the clause:

$$a_i \leftarrow b_1 \wedge \ldots \wedge b_p$$

is the answer clause

$$yes \leftarrow a_1 \wedge \cdots \wedge a_{i-1} \wedge b_1 \wedge \cdots \wedge b_p \wedge a_{i+1} \wedge \cdots \wedge a_m^{40}.$$

Derivations

An answer is an answer clause with m = 0. That is, it is the answer clause $yes \leftarrow .$

- A derivation of query " $?q_1 \land \ldots \land q_k$ " from *KB* is a sequence of answer clauses $\gamma_0, \gamma_1, \ldots, \gamma_n$ such that
 - $\succ \gamma_0$ is the answer clause $yes \leftarrow q_1 \land \ldots \land q_k$,
 - > γ_i is obtained by resolving γ_{i-1} with a clause in *KB*, and
 - > γ_n is an answer.

Top-down definite clause interpreter

To solve the query $?q_1 \land \ldots \land q_k$:

$$ac := "yes \leftarrow q_1 \land \ldots \land q_k"$$

repeat

select a conjunct a_i from the body of ac; choose clause C from KB with a_i as head; replace a_i in the body of ac by the body of C until ac is an answer.

Nondeterministic Choice

Don't-care nondeterminism If one selection doesn't lead to a solution, there is no point trying other alternatives. select

Don't-know nondeterminism If one choice doesn't lead to a solution, other choices may. choose

Example: successful derivation

 $a \leftarrow b \land c.$ $a \leftarrow e \land f.$ $b \leftarrow f \land k.$ $c \leftarrow e.$ $d \leftarrow k.$ e. $f \leftarrow j \land e.$ $f \leftarrow c.$ $j \leftarrow c.$

Query: ?a

Example: failing derivation

 $a \leftarrow b \wedge c.$ $a \leftarrow e \wedge f.$ $b \leftarrow f \wedge k.$ $c \leftarrow e.$ $d \leftarrow k.$ e. $f \leftarrow j \wedge e.$ $f \leftarrow c.$ $j \leftarrow c.$

Query: ?a

 γ_0 : yes $\leftarrow a$ γ_4 : yes $\leftarrow e \wedge k \wedge c$ γ_1 : yes $\leftarrow b \wedge c$ γ_5 : yes $\leftarrow k \wedge c$ γ_2 : yes $\leftarrow f \wedge k \wedge c$ γ_3 : yes $\leftarrow c \wedge k \wedge c$

Reasoning with Variables

> An instance of an atom or a clause is obtained by uniformly substituting terms for variables.

► A substitution is a finite set of the form $\{V_1/t_1, \ldots, V_n/t_n\}$, where each V_i is a distinct variable and each t_i is a term.

The application of a substitution $\sigma = \{V_1/t_1, \ldots, V_n/t_n\}$ to an atom or clause *e*, written $e\sigma$, is the instance of e with every occurrence of V_i replaced by t_i .

The following are substitutions:

The following shows some applications:

- Substitution σ is a unifier of e_1 and e_2 if $e_1\sigma = e_2\sigma$.
- Substitution σ is a most general unifier (mgu) of e_1 and e_2 if
 - $\succ \sigma$ is a unifier of e_1 and e_2 ; and
 - > if substitution σ' also unifies e_1 and e_2 , then $e\sigma'$ is an instance of $e\sigma$ for all atoms e.
- If two atoms have a unifier, they have a most general unifier.

Unification Example

p(A, b, C, D) and p(X, Y, Z, e) have as unifiers: $\succ \sigma_1 = \{X/A, Y/b, Z/C, D/e\}$ $\succ \sigma_2 = \{A/X, Y/b, C/Z, D/e\}$ $\succ \sigma_3 = \{A/V, X/V, Y/b, C/W, Z/W, D/e\}$ $\succ \sigma_4 = \{A/a, X/a, Y/b, C/c, Z/c, D/e\}$ $\sim \sigma_5 = \{X/A, Y/b, Z/A, C/A, D/e\}$ $\succ \sigma_6 = \{X/A, Y/b, Z/C, D/e, W/a\}$

The first three are most general unifiers.

The following substitutions are not unifiers:

$$\sigma_7 = \{Y/b, D/e\}$$
 $\sigma_8 = \{X/a, Y/b, Z/c, D/e$

Bottom-up procedure

You can carry out the bottom-up procedure on the ground instances of the clauses.

Soundness is a direct corollary of the ground soundness.

For completeness, we build a canonical minimal model. We need a denotation for constants:

Herbrand interpretation: The domain is the set of constants (we invent one if the KB or query doesn't contain one). Each constant denotes itself.

Definite Resolution with Variables

A generalized answer clause is of the form

$$yes(t_1,\ldots,t_k) \leftarrow a_1 \wedge a_2 \wedge \ldots \wedge a_m,$$

where t_1, \ldots, t_k are terms and a_1, \ldots, a_m are atoms.

The **SLD** resolution of this generalized answer clause on a_i with the clause

$$a \leftarrow b_1 \wedge \ldots \wedge b_p,$$

where a_i and a have most general unifier θ , is

$$(yes(t_1,\ldots,t_k) \leftarrow a_1 \wedge \ldots \wedge a_{i-1} \wedge b_1 \wedge \ldots \wedge b_p \wedge a_{i+1} \wedge \ldots \wedge a_m) \mathfrak{Y}.$$

To solve query ?B with variables V_1, \ldots, V_k :

- Set *ac* to generalized answer clause $yes(V_1, ..., V_k) \leftarrow B$; While *ac* is not an answer do
 - Suppose ac is $yes(t_1, \ldots, t_k) \leftarrow a_1 \wedge a_2 \wedge \ldots \wedge a_m$ Select atom a_i in the body of ac; Choose clause $a \leftarrow b_1 \land \ldots \land b_p$ in *KB*; Rename all variables in $a \leftarrow b_1 \land \ldots \land b_p$; Let θ be the most general unifier of a_i and a. Fail if they don't unify; Set ac to $(yes(t_1, \ldots, t_k) \leftarrow a_1 \land \ldots \land a_{i-1} \land$ $b_1 \wedge \ldots \wedge b_p \wedge a_{i+1} \wedge \ldots \wedge a_m)\theta$ 52

end while.

 $live(Y) \leftarrow connected_to(Y, Z) \land live(Z). \ live(outside)$ connected_to(w₆, w₅). connected_to(w₅, outside). ?live(A).

 $yes(A) \leftarrow live(A)$. $yes(A) \leftarrow connected_to(A, Z_1) \land live(Z_1).$ $yes(w_6) \leftarrow live(w_5).$ $yes(w_6) \leftarrow connected_to(w_5, Z_2) \land live(Z_2).$ $yes(w_6) \leftarrow live(outside).$ 53 $yes(w_6) \leftarrow .$

- Often we want to refer to individuals in terms of components.
- Examples: 4:55 p.m. English sentences. A classlist.
- We extend the notion of term. So that a term can be $f(t_1, \ldots, t_n)$ where f is a function symbol and the t_i are terms.
- In an interpretation and with a variable assignment, term $f(t_1, \ldots, t_n)$ denotes an individual in the domain.
- With one function symbol and one constant we can refer to infinitely many individuals. 54

- A list is an ordered sequence of elements.
- Let's use the constant *nil* to denote the empty list, and the function cons(H, T) to denote the list with first element *H* and rest-of-list *T*. These are not built-in.
- The list containing *david*, *alan* and *randy* is

cons(david, cons(alan, cons(randy, nil)))

append(X, Y, Z) is true if list Z contains the elements of X followed by the elements of Y

append(nil, Z, Z).

 $append(cons(A, X), Y, cons(A, Z)) \leftarrow append(X, Y, Z)$