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Chapter 4: Searching

➤ Lecture 1 Searching. Graphs. Generic search engine.

➤ Lecture 2 Blind search strategies.

➤ Lecture 3 Heuristic search, including A∗.

➤ Lecture 4 Pruning the search space, direction of search,

iterative deepening, dynamic programming.

➤ Lecture 5 Constraint satisfaction problems, consistency

algorithms.

➤ Lecture 6 Hill climbing, randomized algorithms.
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Searching

➤ Often we are not given an algorithm to solve a problem,

but only a specification of what is a solution — we have

to search for a solution.

➤ Search is a way to implement don’t know

nondeterminism.

➤ So far we have seen how to convert a semantic problem

of finding logical consequence to a search problem of

finding derivations.
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Search Graphs

➤ A graph consists of a set N of nodes and a set A of

ordered pairs of nodes, called arcs .

➤ Node n2 is a neighbor of n1 if there is an arc from n1 to

n2. That is, if 〈n1, n2〉 ∈ A.

➤ A path is a sequence of nodes 〈n0, n1, . . . , nk〉 such that

〈ni−1, ni〉 ∈ A.

➤ Given a set of start nodes and goal nodes, a solution

is a path from a start node to a goal node.
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Example Graph for the Delivery Robot
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Search Graph for SLD Resolution

a← b ∧ c. a← g.

a← h. b← j.

b← k. d ← m.

d ← p. f ← m.

f ← p. g← m.

g← f . k← m.

h← m. p.

?a ∧ d
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Graph Searching

➤ Generic search algorithm: given a graph, start nodes, and

goal nodes, incrementally explore paths from the start

nodes.

➤ Maintain a frontier of paths from the start node that

have been explored.

➤ As search proceeds, the frontier expands into the

unexplored nodes until a goal node is encountered.

➤ The way in which the frontier is expanded defines the

search strategy.
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Problem Solving by Graph Searching
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Graph Search Algorithm

Input: a graph,

a set of start nodes,

Boolean procedure goal(n) that tests if n is a goal node.

frontier := {〈s〉 : s is a start node};
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier;

if goal(nk)

return 〈n0, . . . , nk〉;
for every neighbor n of nk

add 〈n0, . . . , nk, n〉 to frontier;

end while
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➤ We assume that after the search algorithm returns an

answer, it can be asked for more answers and the

procedure continues.

➤ Which value is selected from the frontier at each stage

defines the search strategy.

➤ The neighbors defines the graph.

➤ is_goal defines what is a solution.
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Depth-first Search

➤ Depth-first search treats the frontier as a stack

➤ It always selects one of the last elements added to the

frontier.

➤ If the frontier is [p1, p2, . . .]
➣ p1 is selected. Paths that extend p1 are added to the

front of the stack (in front of p2.

➣ p2 is only selected when all paths from p1 have been

explored.
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Illustrative Graph — Depth-first Search
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Complexity of Depth-first Search

➤ Depth-first search isn’t guaranteed to halt on infinite

graphs or on graphs with cycles.

➤ The space complexity is linear in the size of the path

being explored.

➤ Search is unconstrained by the goal until it happens to

stumble on the goal.
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Breadth-first Search

➤ Breadth-first search treats the frontier as a queue.

➤ It always selects one of the earliest elements added to the

frontier.

➤ If the frontier is [p1, p2, . . . , pr]:
➣ p1 is selected. Its neighbors are added to the end of

the queue, after pr .

➣ p2 is selected next.
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Illustrative Graph — Breadth-first Search
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Complexity of Breadth-first Search

➤ The branching factor of a node is the number of its

neighbors.

➤ If the branching factor for all nodes is finite, breadth-first

search is guaranteed to find a solution if one exists.

It is guaranteed to find the path with fewest arcs.

➤ Time complexity is exponential in the path length:

bn, where b is branching factor, n is path length.

➤ The space complexity is exponential in path length: bn.

➤ Search is unconstrained by the goal.
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Lowest-cost-first Search
➤ Sometimes there are costs associated with arcs. The

cost of a path is the sum of the costs of its arcs.

cost(〈n0, . . . , nk〉) =
k∑

i=1

|〈ni−1, ni〉|

➤ At each stage, lowest-cost-first search selects a path on

the frontier with lowest cost.

➤ The frontier is a priority queue ordered by path cost.

➤ It finds a least-cost path to a goal node.

➤ When arc costs are equal �⇒ breadth-first search.
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Heuristic Search
➤ Idea: don’t ignore the goal when selecting paths.

➤ Often there is extra knowledge that can be used to guide
the search:heuristics.

➤ h(n) is an estimate of the cost of the shortest path from
noden to a goal node.

➤ h(n) uses only readily obtainable information (that is
easy to compute) about a node.

➤ h can be extended to paths:h(〈n0, . . . , nk〉) = h(nk).

➤ h(n) is an underestimate if there is no path fromn to a
goal that has path length less thanh(n).
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Example Heuristic Functions

➤ If the nodes are points on a Euclidean plane and the cost

is the distance, we can use the straight-line distance from

n to the closest goal as the value ofh(n).

➤ If the graph is one of queries for a derivation from a KB,

one heuristic function is the number of atoms in the

query.

➤ If the nodes are locations and cost is time, we can use the

distance to a goal divided by the maximum speed.
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Best-first Search

➤ Idea: select the path whose end is closest to a goal

according to the heuristic function.

➤ Best-first search selects a path on the frontier with

minimal h-value.

➤ It treats the frontier as a priority queue ordered byh.
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Illustrative Graph — Best-first Search
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Complexity of Best-first Search

➤ It uses space exponential in path length.

➤ It isn’t guaranteed to find a solution, even if one exists.

➤ It doesn’t always find the shortest path.
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Heuristic Depth-first Search

➤ It’s a way to use heuristic knowledge in depth-first

search.

➤ Idea: order the neighbors of a node (byh) before adding

them to the front of the frontier.

➤ It locally selects which subtree to develop, but still does

depth-first search. It explores all paths from the node at

the head of the frontier before exploring paths from the

next node.

➤ Space is linear in path length. It isn’t guaranteed to find a

solution. It can get led up the garden path.
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A∗ Search

➤ A∗ search uses both path cost and heuristic values

➤ cost(p) is the cost of the pathp.

➤ h(p) estimates of the cost from the end ofp to a goal.

➤ Let f (p) = cost(p)+ h(p). f (p) estimates of the total

path cost of going from a start node to a goal viap.

start
pathp−→ n︸ ︷︷ ︸

cost(p)

estimate−→ goal︸ ︷︷ ︸
h(n)︸ ︷︷ ︸

f (p)
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A∗ Search Algorithm

➤ A∗ is a mix of lowest-cost-first and best-first search.

➤ It treats the frontier as a priority queue ordered byf (n).

➤ It always selects the node on the frontier with the lowest

estimated distance from the start to a goal node

constrained to go via that node.
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Admissibility of A∗

If there is a solution,A∗ always finds an optimal solution

—the first path to a goal selected— if

➤ the branching factor is finite

➤ arc costs are bounded above zero (there is someε > 0

such that all of the arc costs are greater thanε), and

➤ h(n) is an underestimate of the length of the shortest path

from n to a goal node.
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Why is A∗ admissible?

➤ If a pathp to a goal is selected from a frontier, can there

be a shorter path to a goal?

➤ Suppose pathp′ is on the frontier. Becausep was chosen

beforep′, andh(p) = 0:

cost(p) ≤ cost(p′)+ h(p′).

➤ Becauseh is an underestimate

cost(p′)+ h(p′) ≤ cost(p′′)

for any pathp′′ to a goal that extendsp′

➤ Socost(p) ≤ cost(p′′) for any other pathp′′ to a goal.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

26

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 3, Page 11

Why is A∗ admissible?

➤ There is always an element of an optimal solution path

on the frontier before a goal has been selected. This is

because, in the abstract search algorithm, there is the

initial part of every path to a goal.

➤ A∗ halts, as the minimumg-value on the frontier keeps

increasing, and will eventually exceed any finite number.
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Summary of Search Strategies

Strategy Frontier Selection Halts? Space

Depth-first Last node added No Linear

Breadth-first First node added Yes Exp

Heuristic depth-first Local min h(n) No Linear

Best-first Global min h(n) No Exp

Lowest-cost-first Minimal g(n) Yes Exp

A∗ Minimal f (n) Yes Exp
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Cycle Checking

s

➤ You can prune a path that ends in a node already on the
path. This pruning cannot remove an optimal solution.

➤ Using depth-first methods, with the graph explicitly
stored, this can be done in constant time.

➤ For other methods, the cost is linear in path length.
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Multiple-Path Pruning

s

➤ You can prune a path to node n that you have already

found a path to.

➤ Multiple-path pruning subsumes a cycle check.

➤ This entails storing all nodes you have found paths to.
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☞

☞

☞

30

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 4, Page 4

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the

first path to n?

➤ You can remove all paths from the frontier that use the

longer path.

➤ You can change the initial segment of the paths on the

frontier to use the shorter path.

➤ You can ensure this doesn’t happen. You make sure that

the shortest path to a node is found first.
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Multiple-Path Pruning & A∗

Suppose path p to n was selected, but there is a shorter path to

n. Suppose this shorter path is via path p′ on the frontier.

Suppose path p′ ends at node n′.

cost(p)+ h(n) ≤ cost(p′)+ h(n′) because p was selected

before p′.

cost(p′)+ d(n′, n) < cost(p) because the path to n via p′ is
shorter.

d(n′, n) < cost(p)− cost(p′) ≤ h(n′)− h(n).

You can ensure this doesn’t occur if |h(n′)− h(n)| ≤ d(n′, n).
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☞

☞

☞

32

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 4, Page 6

Monotone Restriction

➤ Heuristic function h satisfies the monotone restriction if

|h(n′)− h(n)| ≤ d(m, n) for every arc 〈m, n〉.
➤ If h satisfies the monotone restriction, A∗ with multiple

path pruning always finds the shortest path to a goal.
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Iterative Deepening

➤ So far all search strategies that are guaranteed to halt use

exponential space.

➤ Idea: let’s recompute elements of the frontier rather

than saving them.

➤ Look for paths of depth 0, then 1, then 2, then 3, etc.

➤ You need a depth-bounded depth-first searcher.

➤ If a path cannot be found at depth B, look for a path at

depth B+ 1. Increase the depth-bound when the search

fails unnaturally (depth-bound was reached).
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Iterative Deepening Complexity

Complexity with solution at depth k & branching factor b:

level breadth-first iterative deepening # nodes

1 1 k b

2 1 k − 1 b2

k − 1 1 2 bk−1

k 1 1 bk

≥ bk ≤ bk
(

b
b−1

)2
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Direction of Search

The definition of searching is symmetric: find path from start

nodes to goal node or from goal node to start nodes.

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity is bn. Should use forward search if

forward branching factor is less than backward branching

factor, and vice versa.

Note: sometimes when graph is dynamically constructed, you

may not be able to construct the backwards graph.
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Bidirectional Search

➤ You can search backward from the goal and forward from

the start simultaneously.

➤ This wins as 2bk/2 � bk . This can result in an

exponential saving in time and space.

➤ The main problem is making sure the frontiers meet.

➤ This is often used with one breadth-first method that

builds a set of locations that can lead to the goal. In the

other direction another method can be used to find a path

to these interesting locations.
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Island Driven Search

Idea: find a set of islands between s and g.

s −→ i1 −→ i2 −→ . . . −→ im−1 −→ g

There are m smaller problems rather than 1 big problem.

This can win as mbk/m � bk .

The problem is to identify the islands that the path must pass

through. It is difficult to guarantee optimality.

You can solve the subproblems using islands �⇒
hierarchy of abstractions.
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Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the

actual distance of the shortest path from node n to a goal.

This can be built backwards from the goal:

dist(n) =




0 if is_goal(n),

min〈n,m〉∈A(|〈n, m〉| + dist(m)) otherwise.

This can be used locally to determine what to do.

There are two main problems:

•You need enough space to store the graph.

• The dist function needs to be recomputed for each goal.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002
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Constraint Satisfaction Problems

➤ Multi-dimensional Selection Problems

➤ Given a set of variables, each with a set of possible values

(a domain), assign a value to each variable that either

➣ satisfies some set of constraints:

satisfiability problems — “hard constraints”

➣ minimizes some cost function, where each

assignment of values to variables has some cost:

optimization problems — “soft constraints”

➤ Many problems are a mix of hard and soft constraints.
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Relationship to Search

➤ The path to a goal isn’t important, only the solution is.

➤ Many algorithms exploit the multi-dimensional nature of

the problems.

➤ There are no predefined starting nodes.

➤ Often these problems are huge, with thousands of

variables, so systematically searching the space is

infeasible.

➤ For optimization problems, there are no well-defined

goal nodes.
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Posing a Constraint Satisfaction Problem

A CSP is characterized by

➤ A set of variables V1, V2, . . . , Vn.

➤ Each variable Vi has an associated domain DVi of

possible values.

➤ For satisfiability problems, there are constraint relations

on various subsets of the variables which give legal

combinations of values for these variables.

➤ A solution to the CSP is an n-tuple of values for the

variables that satisfies all the constraint relations.
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Example: scheduling activities

Variables: A, B, C, D, E that represent the starting times of

various activities.

Domains: DA = {1, 2, 3, 4}, DB = {1, 2, 3, 4},
DC = {1, 2, 3, 4}, DD = {1, 2, 3, 4}, DE = {1, 2, 3, 4}
Constraints:

(B �= 3) ∧ (C �= 2) ∧ (A �= B) ∧ (B �= C) ∧
(C < D) ∧ (A = D) ∧ (E < A) ∧ (E < B) ∧
(E < C) ∧ (E < D) ∧ (B �= D).
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Generate-and-Test Algorithm

Generate the assignment space D = DV1 × DV2 × . . .× DVn .

Test each assignment with the constraints.

Example:

D = DA × DB × DC × DD × DE

= {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4}
×{1, 2, 3, 4} × {1, 2, 3, 4}

= {〈1, 1, 1, 1, 1〉 , 〈1, 1, 1, 1, 2〉 , ..., 〈4, 4, 4, 4, 4〉}.
Generate-and-test is always exponential.
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Backtracking Algorithms

Systematically explore D by instantiating the variables in

some order and evaluating each constraint predicate as soon

as all its variables are bound. Any partial assignment that

doesn’t satisfy the constraint can be pruned.

Example Assignment A = 1 ∧ B = 1 is inconsistent with

constraint A �= B regardless of the value of the other variables.
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CSP as Graph Searching

A CSP can be seen as a graph-searching algorithm:

➤ Totally order the variables, V1, . . . , Vn.

➤ A node assigns values to the first j variables.

➤ The neighbors of node {V1/v1, . . ., Vj/vj} are the

consistent nodes {V1/v1, . . ., Vj/vj, Vj+1/vj+1} for each

vj+1 ∈ DVj+1 .

➤ The start node is the empty assignment {}.
➤ A goal node is a total assignment that satisfies the

constraints.
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Consistency Algorithms

Idea: prune the domains as much as possible before selecting

values from them.

A variable is domain consistent if no value of the domain of

the node is ruled impossible by any of the constraints.

Example: DB = {1, 2, 3, 4} isn’t domain consistent as B = 3

violates the constraint B �= 3.
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Arc Consistency

➤ A constraint network has nodes corresponding to

variables with their associated domain. Each constraint

relation P(X, Y) corresponds to arcs 〈X, Y〉 and 〈Y , X〉.
➤ An arc 〈X, Y〉 is arc consistent if for each value of X in

DX there is some value for Y in DY such that P(X, Y) is

satisfied. A network is arc consistent if all its arcs are arc

consistent.

➤ If an arc 〈X, Y〉 is not arc consistent, all values of X in

DX for which there is no corresponding value in DY may

be deleted from DX to make the arc 〈X, Y〉 consistent.
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Example Constraint Network

{1,2,3,4} {1,2,4}

{1,2,3,4} {1,3,4}

{1,2,3,4}

A
B

D
C

E

A ≠ B

A = D B ≠ C

C < D

E < D E < C
E < A

E < B

B ≠ D
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Arc Consistency Algorithm

The arcs can be considered in turn making each arc consistent.

An arc 〈X, Y〉 needs to be revisited if the domain of Y is

reduced.

Three possible outcomes (when all arcs are arc consistent):

➤ One domain is empty �⇒ no solution

➤ Each domain has a single value �⇒ unique solution

➤ Some domains have more than one value �⇒ may or

may not be a solution
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Finding solutions when AC finishes

➤ If some domains have more than one element �⇒ search

➤ Split a domain, then recursively solve each half.

➤ We only need to revisit arcs affected by the split.

➤ It is often best to split a domain in half.
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Hill Climbing

Many search spaces are too big for systematic search.

A useful method in practice for some consistency and

optimization problems ishill climbing:

➤ Assume a heuristic value for each assignment of values

to all variables.

➤ Maintain an assignment of a value to each variable.

➤ Select a “neighbor” of the current assignment that

improves the heuristic value to be the next current

assignment.
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Selecting Neighbors in Hill Climbing

➤ When the domains are small or unordered, the neighbors

of a node correspond to choosing another value for one

of the variables.

➤ When the domains are large and ordered, the neighbors of

a node are the adjacent values for one of the dimensions.

➤ If the domains are continuous, you can use

Gradient ascent:change each variable proportional to

the gradient of the heuristic function in that direction.

The value of variableXi goes fromvi to vi + η ∂h
∂Xi

.

Gradient descent:go downhill;vi becomesvi − η ∂h
∂Xi

.
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Problems with Hill Climbing

Foothills local maxima

that are not global

maxima

Plateaus heuristic values

are uninformative

Ridge foothill where

n-step lookahead

might help

Ignorance of the peak

Ridge

Foothill

Plateau
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Randomized Algorithms

➤ Consider two methods to find a maximum value:

➣ Hill climbing, starting from some position, keep

moving uphill & report maximum value found

➣ Pick values at random & report maximum value found

➤ Which do you expect to work better to find a maximum?

➤ Can a mix work better?
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Randomized Hill Climbing

As well as uphill steps we can allow for:

➤ Random steps:move to a random neighbor.

➤ Random restart:reassign random values to all variables.

Which is more expensive computationally?
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1-Dimensional Ordered Examples

Two 1-dimensional search spaces; step right or left:

➤ Which method would most easily find the maximum?

➤ What happens in hundreds or thousands of dimensions?

➤ What if different parts of the search space have different

structure?
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Stochastic Local Search for CSPs

➤ Goal is to find an assignment with zero unsatisfied

relations.

➤ Heuristic function: the number of unsatisfied relations.

➤ We want an assignment with minimum heuristic value.

➤ Stochastic local search is a mix of:

➣ Greedy descent: move to a lowest neighbor

➣ Random walk: taking some random steps

➣ Random restart: reassigning values to all variables
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Greedy Descent

➤ It may be too expensive to find the variable-value pair

that minimizes the heuristic function at every step.

➤ An alternative is:

➣ Select a variable that participates in the most number

of conflicts.

➣ Choose a (different) value for that variable that

resolves the most conflicts.

The alternative is easier to compute even if it doesn’t always

maximally reduce the number of conflicts.
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Random Walk
You can add randomness:

➤ When choosing the best variable-value pair, randomly
sometimes choose a random variable-value pair.

➤ When selecting a variable then a value:

➣ Sometimes choose a random variable.

➣ Sometimes choose, at random, a variable that

participates in a conflict (a red node).

➣ Sometimes choose a random variable.

➤ Sometimes choose the best value and sometimes choose

a random value.
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Comparing Stochastic Algorithms

➤ How can you compare three algorithms when

➣ one solves the problem 30% of the time very quickly

but doesn’t halt for the other 70% of the cases

➣ one solves 60% of the cases reasonably quickly but

doesn’t solve the rest

➣ one solves the problem in 100% of the cases, but

slowly?

➤ Summary statistics, such as mean run time, median run

time, and mode run time don’t make much sense.
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Runtime Distribution
➤ Plots runtime (or number of steps) and the proportion (or

number) of the runs that are solved within that runtime.

0
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0.2

0.3

0.4

0.5

0.6

0.7
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Variant: Simulated Annealing

➤ Pick a variable at random and a new value at random.

➤ If it is an improvement, adopt it.

➤ If it isn’t an improvement, adopt it probabilistically

depending on a temperature parameter,T .

➣ With current noden and proposed noden′ we move to

n′ with probabilitye(h(n′)−h(n))/T

➤ Temperature can be reduced.
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Tabu lists

➤ To prevent cycling we can maintain atabu list of thek

last nodes visited.

➤ Don’t allow a node that is already on the tabu list.

➤ If k = 1, we don’t allow a node to the same value.

➤ We can implement it more efficiently than as a list of

complete nodes.

➤ It can be expensive ifk is large.
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Parallel Search

➤ Idea: maintaink nodes instead of one.

➤ At every stage, update each node.

➤ Whenever one node is a solution, it can be reported.

➤ Like k restarts, but usesk times the minimum number of

steps.
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Beam Search

➤ Like parallel search, withk nodes, but you choose thek

best out of all of the neighbors.

➤ Whenk = 1, it is hill climbing.

➤ Whenk = ∞, it is breadth-first search.

➤ The value ofk lets us limit space and parallelism.

➤ Randomness can also be added.
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Stochastic Beam Search

➤ Like beam search, but you probabilistically choose thek

nodes at the next generation.

➤ The probability that a neighbor is chosen is proportional

to the heuristic value.

➤ This maintains diversity amongst the nodes.

➤ The heuristic value reflects the fitness of the node.

➤ Like asexual reproduction: each node gives its mutations

and the fittest ones survive.
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Genetic Algorithms

➤ Like stochastic beam search, but pairs ofnodes are

combined to create the offspring:

➤ For each generation:

➣ Randomly choose pairs of nodes where the fittest

individuals are more likely to be chosen.

➣ For each pair, perform a cross-over: form two

offspringseach taking different parts of their parents:

➣ Mutate some values

➤ Report best node found.
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Crossover
➤ Given two nodes:

X1 = a1, X2 = a2, . . . , Xm = am

X1 = b1, X2 = b2, . . . , Xm = bm

➤ Selecti at random.

➤ Form two offsprings:

X1 = a1, . . . , Xi = ai, Xi+1 = bi+1, . . . , Xm = bm

X1 = b1, . . . , Xi = bi, Xi+1 = ai+1, . . . , Xm = am

➤ Note that this depends on an ordering of the variables.

➤ Many variations are possible.
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Example: Crossword Puzzle

1 2

3

4

Words:

ant, big, bus, car, has

book, buys, hold,

lane, year

beast, ginger, search,

symbol, syntax
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Constraint satisfaction revisited

➤ A Constraint Satisfaction problem consists of:

➣ a set of variables

➣ a set of possible values, a domain for each variable

➣ A set of constraints amongst subsets of the variables

(relations)

➤ The aim is to find a set of assignments that satisfies all

constraints, or to find all such assignments.
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Example: crossword puzzle
1 2

3

4 5

6

at, be, he, it, on,

eta, hat, her, him,

one,

desk, dove, easy,

else, help, kind,

soon, this,

dance, first, fuels,

given, haste,

loses, sense,

sound, think,

usage
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Dual Representations
Two ways to represent the crossword as a CSP

➤ First representation:

➣ nodes represent the positions 1 to 6

➣ domains are the words

➣ constraints specify that the letters on the intersections
must be the same.

➤ Dual representation:

➣ nodes represent the intersecting squares

➣ domains are the letters

➣ constraints specify that the words must fit
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Representations for image interpretation
➤ First representation:

➣ nodes represent the chains and regions

➣ domains are the scene objects

➣ constraints correspond to the intersections and
adjacency

➤ Dual representation:

➣ nodes represent the intersections

➣ domains are the intersection labels

➣ constraints specify that the chains must have same
marking

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

74

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 4, Lecture 6, Page 5

Arc Consistency for non-binary relations
➤ Each relation R(X1, . . . , Xk) converted into k hyperarcs:

〈X1, R(X1, . . . , Xk)〉
· · ·
〈Xk, R(X1, . . . , Xk)〉

➤ Hyperarc 〈Xi, R(X1, . . . , Xk)〉 is arc consistent if

➣ for every vi ∈ domain(Xi)

➣ there exists v1 ∈ domain(X1), …
vi−1 ∈ domain(Xi+1), vi+1 ∈ domain(Xi+1) …
vk ∈ domain(Xk)

➣ such that R(X1, . . . , Xk) is true.
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Variable Elimination
➤ Idea: eliminate the variables one-by-one passing their

constraints to their neighbours

➤ To eliminate a variable Xi:

➣ Join all of the relations in which Xi appears.

➣ Project the join onto the other variables, forming a

new relation.

➣ Remember which values of Xi are associated with the

tuples of the new relation.

➣ Replace the old relations containing Xi with the new

relation.
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Variable elimination (cont.)

➤ When there is a single variable remaining, if it has no

values, the network was inconsistent.

➤ The solutions can be computed from the remembered

mappings.

➤ The variables are eliminated according to some

elimination ordering

➤ Different elimination oderings result in different size

relations being generated.
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Example network

{1,2,3,4}

{1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

A

B

E

C

DA ≠ B

E ≠ C

E ≠ D
D<C

A<D

B<E

E-A is odd
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Example: arc-consistent network

{1,2}

{1,2,3}

{2,3,4} {3,4}

{2,3}

A

B

E
C

DA ≠ B

E ≠ C

E ≠ D
D<C

A<D

B<E

E-A is odd
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Example: eliminating C

r1 : C �= E C E
3 2
3 4
4 2
4 3

r2 : C > D C D
3 2
4 2
4 3

r3 : r1 �� r2 C D E
3 2 2
3 2 4
4 2 2
4 2 3
4 3 2
4 3 3

r4 : π{D,E}r3 D E
2 2
2 3
2 4
3 2
3 3

↪→ new constraint
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Resulting network after eliminating C

{1,2}

{1,2,3}

{2,3,4}

{2,3}

A

B

E

DA ≠ B

E ≠ D

r4(E,D)

A<D

B<E

E-A is odd
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Stochastic local search for CSPs

➤ The following can be used to solve CSPs:

➣ hill climbing on the assignments.

➢ Choose the best variable then the best value.

➢ Choose the best variable-value pair

Best: satisfies the most constraints

➣ random assignments of values.

➣ random walks

➤ A mix works even better.
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Evaluating Algorithms

➤ Summary statistics such as mean or median of run

times are often not useful in comparing algorithms.

➤ The information about an algorithm performance can be

determined from a runtime distribution.

➤ A runtime distribution specifies the proportion of the

instances that have a running time less than any

particular run time.
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