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Chapter 7: Beyond Definite Knowledge

➤ Lecture 1 Equality, inequality and the unique names

assumption

➤ Lecture 2 Complete knowledge assumption and

negation as failure.

➤ Lecture 3 Integrity Constraints, consistency-based

diagnosis.
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Equality

➤ Sometimes two terms denote the same individual.

➤ Example: Clark Kent & superman. 4× 4 & 11+ 5.

The projector we used last Friday & this projector.

➤ Ground termt1 equalsground termt2, written t1 = t2, is

true in interpretationI if t1 andt2 denote the same

individual in interpretationI.
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Equality doesn’t mean similarity

chair 1 chair 2

chair1 �= chair2

chair_on_right = chair2

chair_on_right is not similar tochair2, it is chair2.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

3

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 7, Lecture 1, Page 3

Why is equality important?
➤ In a doctor’s office, the doctor wants to know if a patient

is the same patientthat she saw last week (or is his twin
sister).

➤ In a criminal investigation, the police want to determine
if someone is thesame personas the person who
committed some crime.

➤ When buying a replacement switch, an electrician may
want to know if it was built in thesame factoryas the
switches that were unreliable. (And if it is a
different switch to the one that was replaced the
previous time).
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Allowing Equality Assertions

➤ Without equality assertions, the only thing that is equal to

a ground term is itself.

This can be captured as though you had the assertion

X = X. Explicit equality never needs to be used.

➤ If you allow equality assertions, you need to derive what

follows from them. Either:

➣ axiomatize equality like any other predicate

➣ build special-purpose inference machinery for

equality
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Axiomatizing Equality

X = X.

X = Y ← Y = X.

X = Z ← X = Y ∧ Y = Z.

For eachn-ary function symbolf there is a rule of the form

f (X1, . . . , Xn) = f (Y1, . . . , Yn)←
X1 = Y1 ∧ · · · ∧ Xn = Yn.

For eachn-ary predicate symbolp, there is a rule of the form

p(X1, . . . , Xn)←
p(Y1, . . . , Yn) ∧ X1 = Y1 ∧ · · · ∧ Xn = Yn.
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Special-Purpose Equality Reasoning

paramodulation:if you havet1 = t2, then you can replace

any occurrence oft1 by t2.

Treat equality as arewrite rule, substituting equals for

equals.

You select acanonical representationfor each individual and

rewrite all other representations into that representation.

Example: treat the sequence of digits as the canonical

representation of the number.

Example: use the student number as the canonical

representation for students.
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Unique Names Assumption

The convention that different ground terms denote different

individuals is theunique names assumption.

For every pair of distinct ground termst1 andt2, assume

t1 �= t2, where “�=” means “not equal to.”

Example: For each pair of courses, you don’t want to have to

state,math302 �= psyc303, …

Example: Sometimes the unique names assumption is

inappropriate, for example 3+ 7 �= 2× 5 is wrong.
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Axiomatizing Inequality for the UNA
➤ c �= c′ for any distinct constantsc andc′.
➤ f (X1, . . . , Xn) �= g(Y1, . . . , Ym) for any distinct function

symbolsf andg.

➤ f (X1, . . . , Xn) �= f (Y1, . . . , Yn)← Xi �= Yi, for any

function symbolf . There aren instances of this schema

for everyn-ary function symbolf (one for eachi such

that 1≤ i ≤ n).

➤ f (X1, . . . , Xn) �= c for any function symbolf and

constantc.

➤ t �= X for any termt in which X appears (wheret is not

the termX).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

9

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 7, Lecture 1, Page 9

Top-down procedure and the UNA

➤ Inequality isn’t just another predicate. There are

infinitely many answers toX �= f (Y).

➤ If you have a subgoalt1 �= t2, for termst1 andt2 there are

three cases:

➣ t1 andt2 don’t unify. In this case,t1 �= t2 succeeds.

➣ t1 andt2 are identical including having the same

variables in the same positions. Heret1 �= t2 fails.

➣ Otherwise, there are instances oft1 �= t2 that succeed

and instances oft1 �= t2 that fail.
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Implementing the UNA

➤ Recall: in SLD resolution you can select any subgoal in

the body of an answer clause to solve next.

➤ Idea: only select inequality when it will either succeed

or fail, otherwise select another subgoal. Thus you are

delaying inequality goals.

➤ If only inequality subgoals remain, and none fail, the

query succeeds.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

11

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 7, Lecture 1, Page 11

Inequality Example

notin(X, []).
notin(X, [H|T ])← X �= H ∧ notin(X, T).

good_course(C)← course(C) ∧ passes_analysis(C).

course(cs312).

course(cs444).

course(cs322).

passes_analysis(C)← something_complicated(C).

?notin(C, [cs312, cs322, cs422, cs310, cs402])
∧good_course(C).
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Complete Knowledge Assumption (CKA)
Sometimes you want to assume that a database of facts is

complete. Any fact not listed is false.

Example: Assume that a database of enrolled relations is

complete. Then you can define empty_course.

Example: Assume a database of video segments is complete.

The definite clause RRS is monotonic: adding clauses

doesn’t invalidate a previous conclusion.

With the complete knowledge assumption, the system is

nonmonotonic: a conclusion can be invalidated by adding

more clauses (but this must not be allowed).
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CKA: propositional case
Suppose the rules for atom a are

a← b1.

· · ·
a← bn.

or equivalently: a← b1 ∨ . . . ∨ bn

Under the CKA, if a is true, one of the bi must be true:

a→ b1 ∨ . . . ∨ bn.

Under the CKA, the clauses for a mean Clark’s completion:

a↔ b1 ∨ . . . ∨ bn
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CKA: Ground Database
Example: Consider the relation defined by:

student(mary).

student(john).

student(ying).

The CKA specifies these three are the only students:

student(X)↔ X = mary ∨ X = john ∨ X = ying.

To conclude ¬student(alan), you have to be able to prove

alan �= mary ∧ alan �= john ∧ alan �= ying

This needs the unique names assumption.
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Clark Normal Form

The Clark normal form of the clause:

p(t1, . . . , tk)← B

is the clause

p(V1, . . . , Vk)←
∃W1 . . . ∃Wm V1 = t1 ∧ . . . ∧ Vk = tk ∧ B,

where V1, . . . , Vk are k different variables that did not appear

in the original clause.

W1, . . . , Wm are the original variables in the clause.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

16

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 7, Lecture 2, Page 5

Clark normal form: example

➤ The Clark normal form of:

room(C, room208)←
cs_course(C) ∧ enrollment(C, E) ∧ E < 120.

is

room(X, Y)← ∃C∃E X = C ∧ Y = room208 ∧
cs_course(C) ∧ enrollment(C, E) ∧ E < 120.
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Clark’s Completion of a Predicate
Put all of the clauses for p into Clark normal form, with the

same set of introduced variables:

p(V1, . . . , Vk)← B1

...

p(V1, . . . , Vk)← Bn

This is the same as: p(V1, . . . , Vk)← B1 ∨ . . . ∨ Bn.

Clark’s completion of p is the equivalence

p(V1, . . . , Vk)↔ B1 ∨ . . . ∨ Bn,

That is, p(V1, . . . , Vk) is true if and only if one Bi is true.
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Clark’s Completion Example

Given the mem function:

mem(X, [X|T ]).
mem(X, [H|T ])← mem(X, T).

the completion is

mem(X, Y) ⇐⇒ (∃T Y = [X|T ]) ∨
(∃H∃T Y = [H|T ] ∧ mem(X, T))
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Clark’s Completion of a KB

➤ Clark’s completion of a knowledge base consists of the

completion of every predicate symbol, along with the

axioms for equality and inequality.

➤ If you have a predicate p defined by no clauses in the

knowledge base, the completion is p↔ false. That is,

¬p.

➤ You can interpret negations in the bodies of clauses. ∼p

means that p is false under the Complete Knowledge

Assumption. This is called negation as failure.
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Using negation as failure

Previously we couldn’t define empty_course(C) from a

database of enrolled(S, C).

This can be defined using negation as failure:

empty_course(C)←
course(C) ∧
∼has_Enrollment(C).

has_Enrollment(C)←
enrolled(S, C).
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Bottom-up NAF proof procedure

C := {};
repeat

either select “h← b1 ∧ . . . ∧ bm”∈ KB such that

bi ∈ C for all i, and h �∈ C;
C := C ∪ {h}

or select h such that

for every rule “h← b1 ∧ . . . ∧ bm” ∈ KB

either for some bi,∼bi ∈ C

or some bi = ∼g and g ∈ C

C := C ∪ {∼h}
until no more selections are possible
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Negation as failure example

p← q ∧ ∼r.

p← s.

q←∼s.

r ←∼t.

t.

s← w.
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Top-Down NAF Procedure
If the proof for a fails, you can conclude ∼a.

Failure can be defined recursively.

Suppose you have rules for atom a:

a← b1
...

a← bn

If each body bi fails, a fails.

A body fails if one of the conjuncts in the body fails.

Note that you require finite failure. Example: p← p.
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Free Variables in Negation as Failure

Example:

p(X)←∼q(X) ∧ r(X).

q(a).

q(b).

r(d).

There is only one answer to the query ?p(X), namely X = d.

For calls to negation as failure with free variables, you need

to delay negation as failure goals that contain free variables

until the variables become bound.
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Floundering Goals
If the variables never become bound, a negated goal

flounders.

In this case you can’t conclude anything about the goal.

Example: Consider the clauses:

p(X)←∼q(X)

q(X)←∼r(X)

r(a)

and the query

?p(X).
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Integrity Constraints

➤ In the electrical domain, what if we predict that a light

should be on, but observe that it isn’t?

What can we conclude?

➤ We will expand the definite clause language to include

integrity constraintswhich are rules that implyfalse,

wherefalse is an atom that is false in all interpretations.

➤ This will allow us to make conclusions from a

contradiction.

➤ A definite clause knowledge base is always consistent.

This won’t be true with the rules that implyfalse.
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Horn clauses

➤ An integrity constraintis a clause of the form

false← a1 ∧ . . . ∧ ak

where theai are atoms andfalse is a special atom that is

false in all interpretations.

➤ A Horn clauseis either a definite clause or an integrity

constraint.
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Negative Conclusions

➤ Negations can follow from a Horn clause KB.

➤ The negation ofα, written¬α is a formula that

➣ is true in interpretationI if α is false inI, and

➣ is false in interpretationI if α is true inI.

➤ Example:

KB =




false← a ∧ b.

a← c.

b← c.




KB |= ¬c.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

29

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 7, Lecture 3, Page 4

Disjunctive Conclusions

➤ Disjunctions can follow from a Horn clause KB.

➤ The disjunction ofα andβ, writtenα ∨ β, is

➣ true in interpretationI if α is true inI or β is true inI

(or both are true inI).

➣ false in interpretationI if α andβ are both false inI.

➤ Example:

KB =




false← a ∧ b.

a← c.

b← d.




KB |= ¬c ∨ ¬d.
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Questions and Answers in Horn KBs

➤ An assumableis an atom whose negation you are

prepared to accept as part of a (disjunctive) answer.

➤ A conflict of KB is a set of assumables that, givenKB

imply false.

➤ A minimal conflict is a conflict such that no strict subset

is also a conflict.
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Conflict Example

Example: If {c, d, e, f , g, h} are the assumables

KB =




false← a ∧ b.

a← c.

b← d.

b← e.




➤ {c, d} is a conflict

➤ {c, e} is a conflict

➤ {c, d, e, h} is a conflict
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Using Conflicts for Diagnosis

➤ Assume that the user is able to observe whether a light is

lit or dark and whether a power outlet is dead or live.

➤ A light can’t be both lit and dark. An outlet can’t be both

live and dead:

false⇐ dark(L) & lit(L).

false⇐ dead(L) & live(L).

➤ Makeok assumable:assumable(ok(X)).

➤ Suppose switchess1, s2, ands3 are all up:

up(s1). up(s2). up(s3).
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Electrical Environment

light

two-way
switch

switch

off

on

power
outlet

circuit
breaker

outside power

l1

l2

w1

w0

w2

w4

w3

w6

w5

p2

p1

cb2

cb1

s1

s2

s3
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lit(L)⇐ light(L) & ok(L) & live(L).

live(W)⇐ connected_to(W , W1) & live(W1).

live(outside)⇐ true.

light(l1)⇐ true.

light(l2)⇐ true.

connected_to(l1, w0)⇐ true.

connected_to(w0, w1)⇐ up(s2) & ok(s2).

connected_to(w1, w3)⇐ up(s1) & ok(s1).

connected_to(w3, w5)⇐ ok(cb1).

connected_to(w5, outside)⇐ true.
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➤ If the user has observedl1 andl2 are both dark:

dark(l1). dark(l2).

➤ There are two minimal conflicts:

{ok(cb1), ok(s1), ok(s2), ok(l1)} and

{ok(cb1), ok(s3), ok(l2)}.
➤ You can derive:

¬ok(cb1) ∨ ¬ok(s1) ∨ ¬ok(s2) ∨ ¬ok(l1)

¬ok(cb1) ∨ ¬ok(s3) ∨ ¬ok(l2).

➤ Eithercb1 is broken or there is one of six double faults.
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Diagnoses

➤ A consistency-based diagnosisis a set of assumables

that has at least one element in each conflict.

➤ A minimal diagnosisis a diagnosis such that no subset

is also a diagnosis.

➤ Intuitively, one of the minimal diagnoses must hold. A

diagnosis holds if all of its elements are false.

➤ Example: For the proceeding example there are seven

minimal diagnoses:{ok(cb1)}, {ok(s1), ok(s3)},
{ok(s1), ok(l2)}, {ok(s2), ok(s3)},…
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Meta-interpreter to find conflicts

dprove(G, D0, D1) is true if list D0 is an ending of listD1%%%%%%%%%%%%

such that assuming the elements ofD1 lets you deriveG.%%%%%%%%%

dprove(true, D, D).

dprove((A & B), D1, D3)←
dprove(A, D1, D2) ∧ dprove(B, D2, D3).

dprove(G, D, [G|D])← assumable(G).

dprove(H, D1, D2)←
(H ⇐ B) ∧ dprove(B, D1, D2).

conflict(C)← dprove(false, [ ], C).
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Tricky Example

false⇐ a.

a⇐ b & c.

b⇐ d.

b⇐ e.

c⇐ f .

c⇐ g.

e⇐ h & w.

e⇐ g.

w⇐ d.

assumabled, f , g, h.
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Bottom-up Conflict Finding

➤ Conclusionsare pairs〈a, A〉, wherea is an atom andA
is a set of assumables that implya.

➤ Initially, conclusion setC = {〈a, {a}〉 : a is assumable}.
➤ If there is a ruleh← b1 ∧ . . . ∧ bm such that

for eachbi there is someAi such that〈bi, Ai〉 ∈ C, then
〈h, A1 ∪ . . . ∪ Am〉 can be added toC.

➤ If 〈a, A1〉 and〈a, A2〉 are inC, whereA1 ⊂ A2, then
〈a, A2〉 can be removed fromC.

➤ If 〈false, A1〉 and〈a, A2〉 are inC, whereA1 ⊆ A2, then
〈a, A2〉 can be removed fromC.
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Bottom-up Conflict Finding Code

C := {〈a, {a}〉 : a is assumable};
repeat

select clause “h← b1 ∧ . . . ∧ bm” in T such that

〈bi, Ai〉 ∈ C for all i and

there is no
〈
h, A′

〉 ∈ C or
〈
false, A′

〉 ∈ C

such thatA′ ⊆ A whereA = A1 ∪ . . . ∪ Am;

C := C ∪ {〈h, A〉}
Remove any elements ofC that can now be pruned;

until no more selections are possible
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Integrity Constraints in Databases

➤ Database designers can use integrity constraints to

specify constraints that should never be violated.

➤ Example:A student can’t have two different grades for

the same course.

false←
grade(St, Course, Gr1) ∧
grade(St, Course, Gr2) ∧
Gr1 �= Gr2.

➤ When false is derived,HOW can be used to debug the KB.
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