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Chapter 7. Beyond Definite Knowledge

[l Lecturel Equality, inequality and the unigque names
assumption

L] Lecture 2 Complete knowledge assumption and
negation as failure.

L] Lecture 3 Integrity Constraints, consistency-based
diagnosis.
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| ] Sometimes two terms denote the same individual.

|1 Example: Clark Kent & superman. 4 4 & 11 + 5.
The projector we used last Friday & this projector.

L] Ground ternt; equalsground ternt,, writtent; = to, is
true in interpretation if t;1 andt> denote the same
Individual in interpretation.
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Equality doesn’t mean similari

chair 1 chair 2

chairl # chair2
chair_on_right = chair?2
chair_on_right is not similar tochair 2, it is chair 2.

jl:lD
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Why is equality important

L1 In adoctor’s office, the doctor wants to know if a patie
IS the same patienthat she saw last week (or is his tv
sister).

L] In a criminal investigation, the police want to determi
If someone is thisame persoras the person who
committed some crime.

L1 When buying a replacement switch, an electrician m:
want to know if it was built in the same factoryas the
switches that were unreliable. (And ifitis a

different switch to the one that was replaced the
previous time).

jDI:J
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Allowing Equality Assertion

L1 Without equality assertions, the only thing that is equ.
a ground term is itself.

This can be captured as though you had the assertio
X = X. Explicit equality never needs to be used.

L1 If you allow equality assertions, you need to derive w
follows from them. Either:

L] axiomatize equality like any other predicate

L1 build special-purpose inference machinery for

equality 5

jDI:J
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Axiomatizing Equalit

X =X
X=Y<«<Y=X.
X=ZL < X=YAY=L.
For eacm-ary function symbof there is a rule of the form
f(Xg, ..., X)) =T1T(Y1,...,Yn) <
X1=Y1A ---AXpn= Yqh.
For eachm-ary predicate symbai, there is a rule of the forn
P(Xq, ..., Xp) <
PYL,....YDAX1i=Y1A - AXn=Yn °

jDI:J
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Special-Purpose Equality Reason

paramodulationif you havet; = tp, then you can replace
any occurrence df, by t,.

Treat equality as rewrite rule, substituting equals for
equals.

You select ¢ canonical representatiofor each individual an
rewrite all other representations into that representation.

Example: treat the sequence of digits as the canonical
representation of the number.

Example: use the student number as the canonical
representation for students.

14
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Unigue Names Assumpitic

The convention that different ground terms denote differe
Individuals is the unigue names assumption.

For every pair of distinct ground termisandty, assume
t1 # to, where “£” means “not equal to.”

Example: For each pair of courses, you don’t want to hav
state,math302 # psyc303, ...

Example: Sometimes the unigue names assumption Is

Inappropriate, for example8 7 # 2 x 5 is wrong.
8

jDI:J
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Axiomatizing Inequality for the UN/

L] ¢ # ¢ for any distinct constantsandc'.

Ll f(Xq, ..., X0 #9(Y, ..., Ym) for any distinct function
symbolsf andg.

L f (X, ..., X)) ZF(Y1, ..., Yn) < X #Y;, for any
function symbok. There aran instances of this schem
for everyn-ary function symbof (one for each such
that 1< i < n).

L] f(Xq,...,X%Xn) # cforany function symbof and
constant.

L1 t # X for any termt in which X appears (whereis not
the termX). °

Ll
[]
H
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Top-down procedure and the U

L1 Inequality isn't just another predicate. There are
Infinitely many answers tX £ f (Y).

L] If you have a subgodj # to, for termst; andt, there ar:
three cases:

L] t; andty don't unify. In this caset; # to succeeds.

L] t; andt; are identical including having the same
variables in the same positions. Heéje# ts fails.

L] Otherwise, there are instancestpf~ t, that succee
and instances df # t> that fail. 10

Ll
[]
H
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Implementing the UN/

L] Recall: in SLD resolution you can select any subgoa
the body of an answer clause to solve next.

[1 Idea: only select inequality when it will either succee
or fail, otherwise select another subgoal. Thus you a
delaying inequality goals.

L1 If only inequality subgoals remain, and none fail, the
guery succeeds.

11
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Inequality Exampl

notin(X, []).
notin(X, [H|T]) < X #H A notin(X, T).

good_course(C) <« course(C) A passes analysis(C).

course(cs312).

course(cs444).

course(cs322).

passes analysis(C) <« something _complicated(C).
?notin(C, [cs312 ¢s322 cs422 ¢s310, cs402))

Agood_course(C). "

]
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Complete Knowledge Assumption (CKA)

Sometimes you want to assume that a database of factsis
complete. Any fact not listed isfalse.

Example: Assume that a database of enrolled relationsis
complete. Then you can define empty course.

Example: Assume a database of video segments is complete.

The definite clause RRS Is monotonic: adding clauses
doesn’t invalidate a previous conclusion.

With the complete knowledge assumption, the systemis
nonmonotonic: aconclusion can be invalidated by adding
more clauses (but this must not be allowed).
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CKA: propositional case

Suppose therulesfor atom a are

a<—b1.

a <— bn.
or equivalently: a < by v ...V by
Under the CKA, if aistrue, one of the b must be true:

a— byv...vDh,

Under the CKA, the clauses for a mean Clark’s completion:

a<—>b1\/...\/bn 14

jDD
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CKA: Ground Database

Example: Consider the relation defined by:

student(mary).
student (john).
student(ying).
The CKA gspecifies these three are the only students:
student(X) <> X = mary v X = john v X = ying.
To conclude —student (alan), you have to be able to prove
alan £ mary A alan # john A alan # ying

15
This needs the unique names assumption.

jDI:J
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Clark Normal Form

The Clark normal form of the clause:

p(ty, ..., k) < B
1S the clause
PV, ..., Vi) <
W1 ... W Vi =11 A ... A V=1 A B,

where V1, ..., Vi are k different variables that did not appear
In the original clause.

Wy, ..., Wp arethe original variables in the clause. 16

jDI:J
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Clark normal form: example

| ] The Clark normal form of:

room(C, room208) <«

cs_course(C) A enrollment(C, E) A E < 120.

IS
room(X, Y) < dCdEX =C A Y = room208 A

cs _course(C) A enrollment(C, E) A E < 120.

17
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Clark’s Completion of a Predicate

Put all of the clauses for p into Clark normal form, with the
same set of introduced variables:

P(V1,...,Vk) < Bs

P(V1, ..., Vk) < Bnp
Thisisthesameas. p(Vy, ..., V) < B1Vv... VB
Clark’s completion of p isthe equivalence
P(V1,...,Vk) < B1Vv...Vv By,

18
Thatis, p(Vq, ..., V) istrueif and only if one B; istrue.

Ll
[]
H
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Clark’s Completion Example

Given the mem function:;

mem(X, [X|T]).
mem(X, [H|T]) < mem(X, T).

the completionis

mem(X,Y) < @T Y =[X|T]) Vv
@ARIT Y =[H|T] Amem(X, T))

19

jDD
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Clark’s Completion of aKB

L] Clark’s completion of a knowledge base consists of the
completion of every predicate symbol, along with the
axioms for equality and inequality.

L1 If you have a predicate p defined by no clausesin the
knowledge base, the completionisp < false. That is,

L] You can interpret negations in the bodies of clauses. ~p
means that p is false under the Complete Knowledge
Assumption. Thisiscalled negation asfailure. 20

jDI:J
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Using negation asfailure

Previously we couldn’t define empty _course(C) from a
database of enrolled(S, C).

This can be defined using negation as fallure:

empty _course(C) <«
course(C) A
~has_Enroliment(C).

has Enrollment(C) «
enrolled(S, C).

21
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Bottom-up NAF proof procedure

C:={}
repeat
elither select “h < by A ... A by € KB such that
b e Cfordli,andh ¢ C;
C:=CuU({h}
or select h such that
forevery rule“h <~ b1 A ... Aby” € KB
either for some bj, ~b; € C
or someb; = ~gandge C
C:=CU{~h}

i : . 22
until no more selections are possible

jDI:J
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Negation as fallure example

D < QA ~T.
pD< S

q < ~S.

r < ~t.

t.

S <— W.

23

jl:lD
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Top-Down NAF Procedure

If the proof for a falls, you can conclude ~a.
Fallure can be defined recursively.

Suppose you have rules for atom a:

a<—b1

a < by

If each body b; fails, a fails.

A body failsif one of the conjuncts in the body fails.

24
Note that you require finite failure. Example: p < p.

jDI:J
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Free Variables in Negation as Failure

Example:

P(X) <= ~Q(X) AT(X).
q@).
q(o).
r(d).

There isonly one answer to the query 7p(X), namely X = d.

For callsto negation as failure with free variables, you need

to delay negation as failure goals that contain free variables
i : 25
until the variables become bound.

]
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Floundering Goals

If the variables never become bound, a negated goal
flounders.

In this case you can’'t conclude anything about the goal.
Example: Consider the clauses:
P(X) < ~q(X)
q(X) < ~r(X)
ra)
and the query

D(X). 26

]
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In the electrical domain, what if we predict that a ligh
should be on, but observe that it isn’t?
What can we conclude?

We will expand the definite clause language to includ
Integrity constraintswhich are rules that implfal se,
wherefalse is an atom that is false in all interpretation

This will allow us to make conclusions from a
contradiction.

A definite clause knowledge base is always consistel
This won't be true with the rules that impfglse. °f

0]
o
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Horn clause

L1 An integrity constraintis a clause of the form

false < a1 A ... A ax

where theg; are atoms anthlse is a special atom that i
false in all interpretations.

L1 A Horn clauseis either a definite clause or an integri
constraint.

28
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Negative Conclusio

L1 Negations can follow from a Horn clause KB.

[l The negation of, written —« is a formula that
] is true in interpretation if « is false inl, and
L] is false in interpretatioh if « is true inl.

L1 Example:

false<anb. |
KB={ a<«oc } KB & —cC.

L b <« C.

jl:lD
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Disjunctive Conclusion

| Disjunctions can follow from a Horn clause KB.

L] The disjunction otr andg, writtena Vv B, is
L] true in interpretation if « is true inl or 8 is true inl
(or both are true in).
L] false in interpretation if « andg are both false i.

L1 Example:

KB =

false < a A Db.

a < C.

\ b « d.

KB

— —C Vv —d.

30

jDD
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Questions and Answers in Horn K

L] An assumables an atom whose negation you are
prepared to accept as part of a (disjunctive) answer.

L] A conflict of KB is a set of assumables that, giyéB
Imply false.

L1 A minimal conflict is a conflict such that no strict sub
IS also a conflict.

31

jDD
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Conflict Example

Example: If {c,d, e f, g, h} are the assumables

r false < a A b. \
a < C.

KB = | >

b <« d.

L b« e

| {c, d} Is a conflict

| {c, e} Is a conflict

| {c,d, e hlis a conflict

32

jl:lD
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Using Conflicts for Diagnos

[1 Assume that the user is able to observe whether a lic
lit or dark and whether a power outlet is dead or live.

L1 Alight can’t be both lit and dark. An outlet can’t be bc
live and dead:
false « dark(L) & lit(L).
false <= dead(L) & live(L).

L] Make ok assumableassumable(ok(X)).

L] Suppose switches, s, andsz are all up:
up(Sy). Up(s). Up(Sz).

33
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Electrical Environme
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It(L) < light(L) & ok(L) & live(L).

Ive(W) < connected_to(W, Wp) & live(W,).
Ive(outside) « true.

ight(l1) < true.

Ight(l2) < true.

connected to(lq, wg) < true.

connected _to(wg, Wp) < Up(sp) & ok(sp).
connected _to(wq, W3) < up(s1) & ok(sy).
connected _to(ws, Ws) < ok(cby).

connected to(ws, outside) < true. -

jDI:J
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| If the user has observeégdandl, are both dark:
dark(lq). dark(l>).

|| There are two minimal conflicts:
{ok(chy), ok(sy), ok(sp), ok(l1)} and
{ok(chy), ok(sz), ok(l2)}.

L] You can derive:
—0ok(cbp) v —0ok(s1) Vv —0ok(sp) Vv —0oK(l1)
—ok(cby) v —0ok(s3) Vv —0oK(l>7).

LI Eithercb; is broken or there is one of six double fault:

O

[]
i
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L1 A consistency-based diagnodsa set of assumables
that has at least one element in each conflict.

[l A minimal diagnosisis a diagnosis such that no subs
IS also a diagnhosis.

L1 Intuitively, one of the minimal diagnoses must hold. /
diagnosis holds if all of its elements are false.

[l Example: For the proceeding example there are sev
minimal diagnoses{ok(cby)}, {ok(sy), ok(s3)},

{ok(sy), ok(l2)}, {ok(s2), Ok(s3)},... 37

jDI:J
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WRprove(G, Do, Dy) is true if list Dg Is an ending of lisD1
s uch that assuming the elementdaflets you derives.

dprove(true, D, D).
dprove((A & B), D1, D3) <«
dprove(A, D1, D2) A dprove(B, Do, D3).
dprove(G, D, [G|D]) < assumable(G).
dprove(H, D1, Dp) <«
(H < B) A dprove(B, D1, D»).
conflict(C) <« dprove(false, [ ], C). 38

jDI:J
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Tricky Example

false « a.
a<bé&c.

b«<d.

b<e

c<f.

cC<g.

e<=h&w.

e < 0.

w < d.
assumabld, . g, h.

39
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Bottom-up Conflict Finding

L] Conclusionsare pairsa, A), wherea is an atom and\
IS a set of assumables that img@aly

L] Initially, conclusion seC = {{a, {a}) : ais assumable

L] Ifthereis aruleh < by A ... A by such that
for eachb; there i1s somé\; such thatb;, Aj) € C, then
(h, AU ...UAn) can be added t€.

L If (a, A1) and(a, Ay) are inC, whereA; C A, then
(a, Ao) can be removed frorg.

L] If (false, Aj) and(a, Ay) are inC, whereA; C Ay, trlgn
(a, A») can be removed frorg.

jDI:J
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Bottom-up Conflict Finding Coc

C:={(a, {a}) : ais assumablé;
repeat
select clause h < b1 A ... ADby” INn T such that
(bj, Aj) € Cforalli and
there is ndh, A') € C or (false, A) € C
such thath € AwhereA= A1 U...UAy;
C:=CU{(h A}
Remove any elements @fthat can now be pruned,;

until no more selections are possible
41
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Integrity Constraints in Databas

L] Database designers can use integrity constraints to
specify constraints that should never be violated.

L1 Example: A student can’t have two different grades f
the same course.

false <
grade(S, Course, Grq) A
grade(S, Course, Gro) A
Grq #£ Gro.

[] When false is derivedHOW can be used to debug the k

5
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