Chapter 9: Assumption-based Reasoning

Lecture 1 Assumption-based reasoning framework.

Lecture 2 Default reasoning, the multiple-extension problem, skeptical reasoning.

Lecture 3 Abduction, abductibe diagnosis

Lecture 4 Combining Evidential and Causal Reasoning

Lecture 5 Algorithms

Assumption-based Reasoning

Often we want our agents to make assumptions rather than doing deduction from their knowledge. For example:

- ➤ In default reasoning the delivery robot may want to assume Mary is in her office, even if it isn't always true.
- ► In diagnosis you hypothesize what could be wrong with a system to produce the observed symptoms.
- In design you hypothesize components that provably fulfill some design goals and are feasible.

Design and Recognition

Two different tasks use assumption-based reasoning:

- Design The aim is to design an artifact or plan. The designer can select whichever design they like that satisfies the design criteria.
 - Recognition The aim is to find out what is true based on observations. If there are a number of possibilities, the recognizer can't select the one they like best. The underlying reality is fixed; the aim is to find out what it is.

Compare: Recognizing a disease with designing a treatment. 3^{3} Designing a meeting time with determining when it is.

The Assumption-based Framework

The assumption-based framework is defined in terms of two sets of formulae:

- F is a set of closed formula called the facts.
 These are formulae that are given as true in the world.
 We assume F are Horn clauses.
- *H* is a set of formulae called the possible hypotheses or assumables. Ground instance of the possible hypotheses can be assumed if consistent.

Making Assumptions

► A scenario of $\langle F, H \rangle$ is a set *D* of ground instances of elements of *H* such that $F \cup D$ is satisfiable.

- An explanation of g from $\langle F, H \rangle$ is a scenario that, together with F, implies g.
 - *D* is an explanation of *g* if $F \cup D \models g$ and $F \cup D \not\models false$.

A minimal explanation is an explanation such that no strict subset is also an explanation.

An extension of $\langle F, H \rangle$ is the set of logical consequences of *F* and a maximal scenario of $\langle F, H \rangle$.

 $a \leftarrow b \wedge c$. $b \leftarrow e$. \blacktriangleright {*e*, *m*, *n*} is a scenario. $b \leftarrow h$. \blacktriangleright {*e*, *g*, *m*} is not a scenario. $c \leftarrow g$. \blacktriangleright {*h*, *m*} is an explanation for *a*. $c \leftarrow f$. \blacktriangleright {*e*, *h*, *m*} is an explanation for *a*. $d \leftarrow g$. \blacktriangleright {*e*, *h*, *m*, *n*} is a maximal scenario. *false* $\leftarrow e \land d$. \blacktriangleright {*h*, *g*, *m*, *n*} is a maximal scenario. $f \leftarrow h \wedge m$.

assumable e, h, g, m, n.

Default Reasoning and Abduction

There are two strategies for using the assumption-based framework:

- Default reasoning Where the truth of g is unknown and is to be determined.
 An explanation for g corresponds to an argument for g.
 - Abduction Where g is given, and we are interested in explaining it. g could be an observation in a recognition task or a design goal in a design task.

- When giving information, you don't want to enumerate all of the exceptions, even if you could think of them all.
- In default reasoning, you specify general knowledge and modularly add exceptions. The general knowledge is used for cases you don't know are exceptional.
- Classical logic is monotonic: If g logically follows from A, it also follows from any superset of A.
- Default reasoning is nonmonotonic: When you add that something is exceptional, you can't conclude what you could before.

Defaults as Assumptions

Default reasoning can be modeled using

- \rightarrow *H* is normality assumptions
- \succ F states what follows from the assumptions
- An explanation of g gives an argument for g.

A reader of newsgroups may have a default: "Articles about AI are generally interesting".

 $H = \{int_ai(X)\},\$

where $int_ai(X)$ means X is interesting if it is about AI. With facts:

> *interesting*(X) \leftarrow *about_ai*(X) \land *int_ai*(X). *about_ai*(*art_*23).

{*int_ai(art_23)*} is an explanation for *interesting(art_23)*\$

Default Example, Continued

We can have exceptions to defaults:

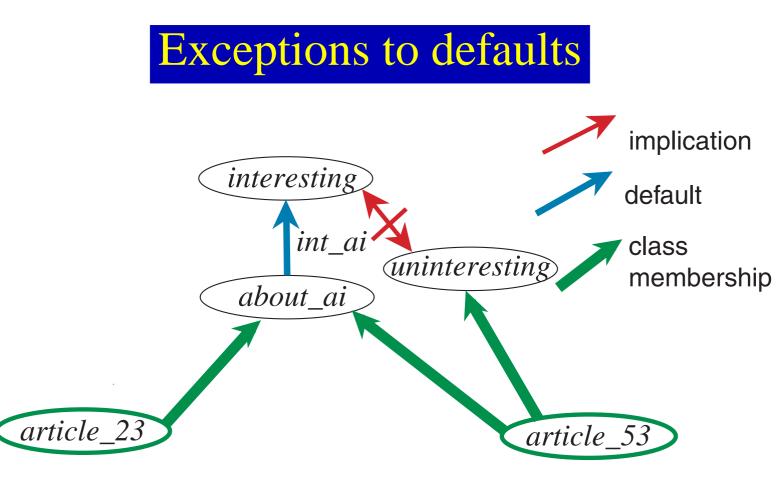
false \leftarrow interesting(X) \land uninteresting(X).

Suppose article 53 is about AI but is uninteresting:

about_ai(art_53).

uninteresting(art_53).

We cannot explain *interesting*(*art*_53) even though everything we know about *art*_23 you also know about *art*_53.



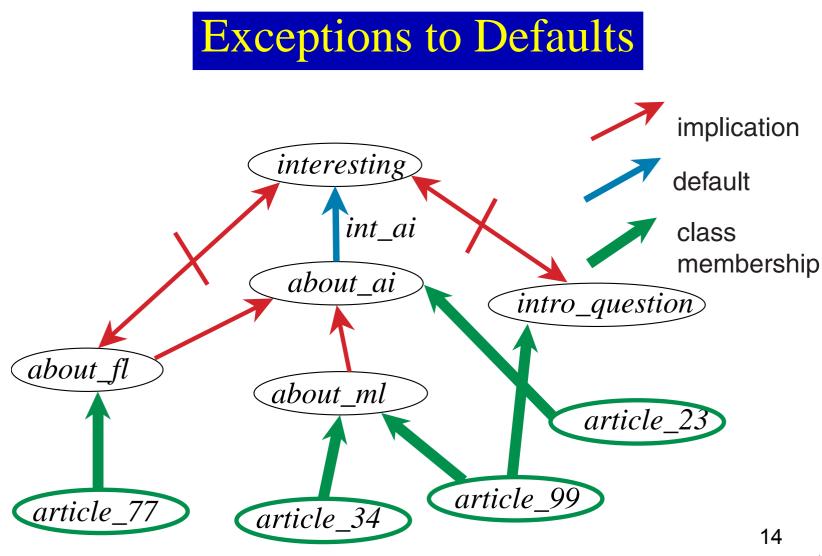
Exceptions to Defaults

"Articles about formal logic are about AI." "Articles about formal logic are uninteresting." "Articles about machine learning are about AI."

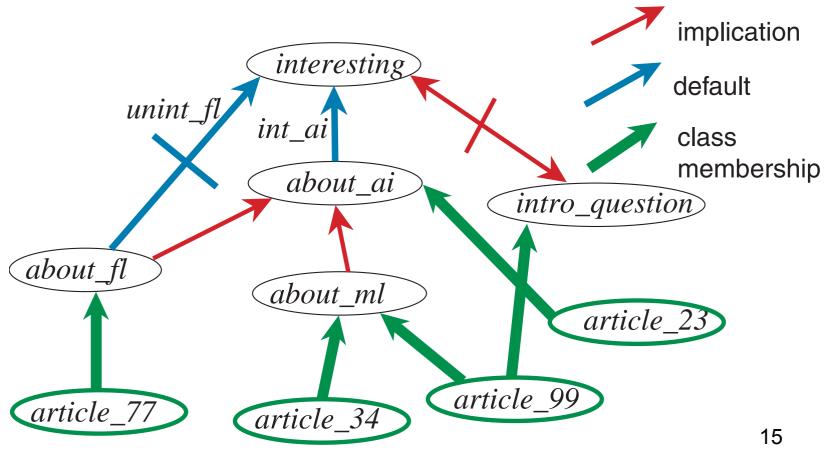
$$about_ai(X) \leftarrow about_fl(X).$$

 $uninteresting(X) \leftarrow about_fl(X).$
 $about_ai(X) \leftarrow about_ml(X).$
 $about_fl(art_77).$
 $about_ml(art_34).$

You can't explain *interesting*(*art*_77). You can explain *interesting*(*art*_34).



Formal logic is uninteresting by default



Contradictory Explanations

Suppose formal logic articles aren't interesting by default:

 $H = \{unint_fl(X), int_ai(X)\}$

The corresponding facts are:

 $interesting(X) \leftarrow about_ai(X) \land int_ai(X).$ $about_ai(X) \leftarrow about_fl(X).$ $uninteresting(X) \leftarrow about_fl(X) \land unint_fl(X).$ $about_fl(art_77).$

uninteresting(*art*_77) has explanation {*unint_fl*(*art*_77)}. *interesting*(*art*_77) has explanation {*int_ai*(*art*_77)}.

Overriding Assumptions

- Because art_77 is about formal logic, the argument "art_77 is interesting because it is about AI" shouldn't be applicable.
- This is an instance of preference for more specific defaults.
- Arguments that articles about formal logic are interesting because they are about AI can be defeated by adding:

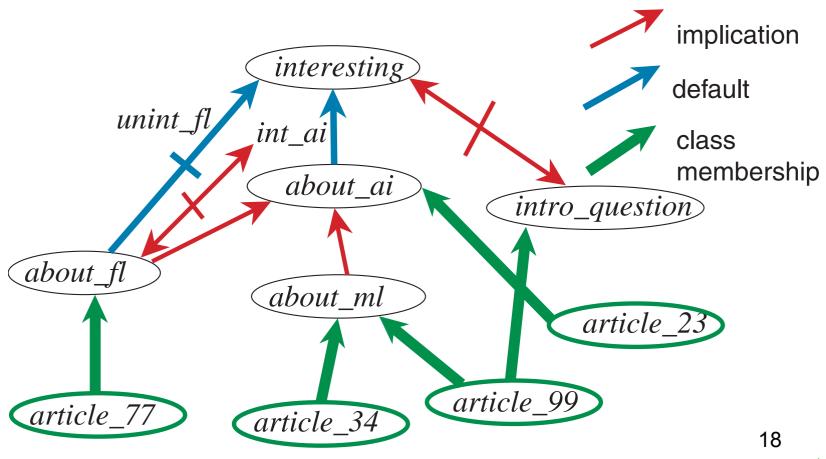
17

$$false \leftarrow about_fl(X) \land int_ai(X).$$

This is known as a cancellation rule.

You can no longer explain interesting(art_77).

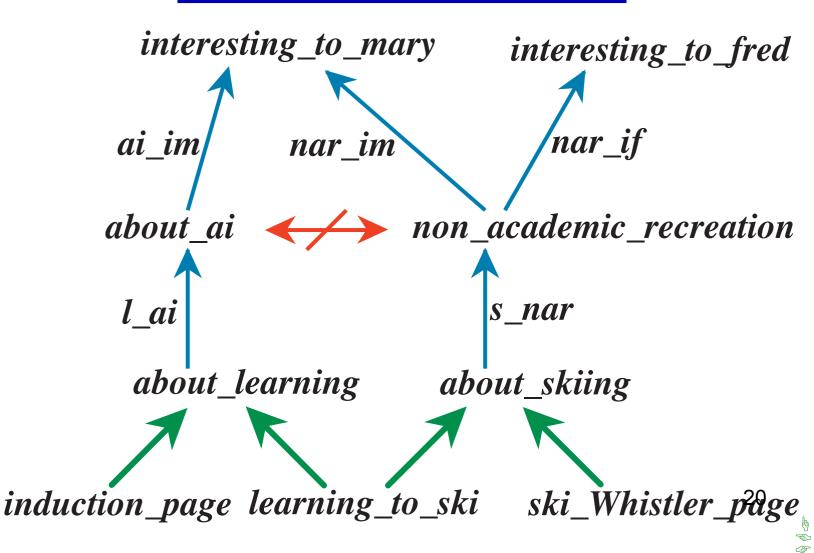
Diagram of the Default Example



Multiple Extension Problem

- What if incompatible goals can be explained and there are no cancellation rules applicable? What should we predict?
- For example: what if introductory questions are uninteresting, by default?
- This is the multiple extension problem.
 - Recall: an extension of $\langle F, H \rangle$ is the set of logical consequences of *F* and a maximal scenario of $\langle F, H \rangle_{a}$

Competing Arguments



Skeptical Default Prediction

- > We predict g if g is in all extensions of $\langle F, H \rangle$.
 - Suppose g isn't in extension E. As far as we are concerned E could be the correct view of the world. So we shouldn't predict g.
- ➤ If g is in all extensions, then no matter which extension turns out to be true, we still have g true.
- Thus g is predicted even if an adversary gets to select assumptions, as long as the adversary is forced to select something. You do not predict g if the adversary can pick assumptions from which g can't be explained.

Minimal Models Semantics for Prediction

Recall: logical consequence is defined as truth in all models.

We can define default prediction as truth in all minimal models.

Suppose M_1 and M_2 are models of the facts.

 $M_1 <_H M_2$ if the hypotheses violated by M_1 are a strict subset of the hypotheses violated by M_2 . That is:

 ${h \in H' : h \text{ is false in } M_1} \subset {h \in H' : h \text{ is false in } M_2}$

where H' is the set of ground instances of elements of H_{22}

Minimal Models and Minimal Entailment

- M is a minimal model of F with respect to H if M is a model of F and there is no model M_1 of F such that $M_1 <_H M$.
- ► g is minimally entailed from $\langle F, H \rangle$ if g is true in all minimal models of F with respect to H.

• Theorem: g is minimally entailed from $\langle F, H \rangle$ if and only if g is in all extensions of $\langle F, H \rangle$.

Abduction is an assumption-based reasoning strategy where

- H is a set of assumptions about what could be happening in a system
- \blacktriangleright F axiomatizes how a system works
- \triangleright g to be explained is an observation or a design goal

Example: in diagnosis of a physical system:

- H contain possible faults and assumptions of normality,
- F contains a model of how faults manifest themselves
- g is conjunction of symptoms.

Abduction versus Default Reasoning

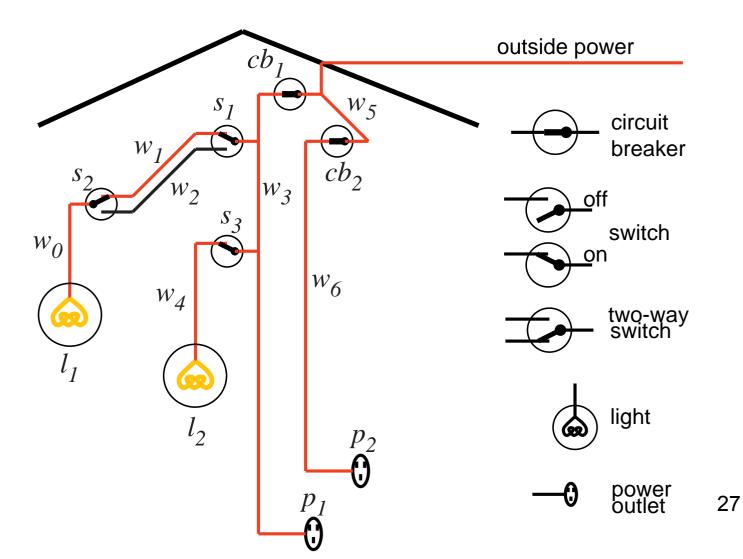
Abduction differs from default reasoning in that:

- > The explanations are of interest, not just the conclusion.
- H contains assumptions of abnormality as well as assumptions of normality.
- We don't only explain normal outcomes. Often we want to explain why some abnormal observation occurred.
- We don't care if $\neg g$ can also been explained.

Abductive Diagnosis

- You need to axiomatize the effects of normal conditions and faults.
- > We need to be able to explain all of the observations.
- Assumables are all of those hypotheses that require no further explanation.

Electrical Environment



 $lit(L) \Leftarrow light(L) \& ok(L) \& live(L).$ $dark(L) \Leftarrow light(L) \& broken(L).$ $dark(L) \Leftarrow light(L) \& dead(L).$ $live(W) \Leftarrow connected_to(W, W_1) \& live(W_1).$ $dead(W) \Leftarrow connected_to(W, W_1) \& dead(W_1).$ $dead(W) \Leftarrow unconnected(W).$ connected_to(l_1, w_0) \Leftarrow true. connected_to(w_0, w_1) $\Leftarrow up(s_2) \& ok(s_2)$. $unconnected(w_0) \Leftarrow broken(s_2).$ $unconnected(w_1) \Leftarrow broken(s_1).$ $unconnected(w_1) \Leftarrow down(s_1).$ false $\leftarrow ok(X) \land broken(X)$. assumable ok(X), broken(X), up(X), down(X).

Explaining Observations

To explain lit(l1) there are two explanations: {ok(l1), ok(s2), up(s2), ok(s1), up(s1), ok(cb1)} {ok(l1), ok(s2), down(s2), ok(s1), down(s1), ok(cb1)}

To explain lit(l2) there is one explanation: {ok(cb1), ok(s3), up(s3), ok(l2)}

Explaining Observations (cont)

To explain dark(l1) there are 8 explanations: $\{broken(l1)\}$ {broken(cb1), ok(s1), up(s1), ok(s2), up(s2)} {broken(s1), ok(s2), up(s2)} $\{down(s1), ok(s2), up(s2)\}$ {broken(cb1), ok(s1), down(s1), ok(s2), down(s2)} {up(s1), ok(s2), down(s2)} {broken(s1), ok(s2), down(s2)} $\{broken(s2)\}$

Explaining Observations (cont)

To explain $dark(l1) \wedge lit(l2)$ there are explanations: $\{ok(cb1), ok(s3), up(s3), ok(l2), broken(l1)\}$ $\{ok(cb1), ok(s3), up(s3), ok(l2), broken(s1), ok(s2), up(s2)\}$ $\{ok(cb1), ok(s3), up(s3), ok(l2), down(s1), ok(s2), up(s2)\}$ $\{ok(cb1), ok(s3), up(s3), ok(l2), up(s1), ok(s2), down(s2)\}$ $\{ok(cb1), ok(s3), up(s3), ok(l2), broken(s1), ok(s2), down(s2)\}$ $\{ok(cb1), ok(s3), up(s3), ok(l2), broken(s2)\}$

Abduction for User Modeling

Suppose the infobot wants to determine what a user is interested in. We can hypothesize the interests of users:

 $H = \{interested_in(Ag, Topic)\}.$

Suppose the corresponding facts are:

 $selects(Ag, Art) \leftarrow$ $about(Art, Topic) \land$ $interested_in(Ag, Topic).$ $about(art_94, ai).$ $about(art_94, info_highway).$

about(art_34, ai). about(art_34, skiing).

32

() ()

Explaining User's Actions

There are two minimal explanations of *selects(fred, art_94)*:

{*interested_in(fred, ai)*}.

{*interested_in(fred, information_highway)*}.

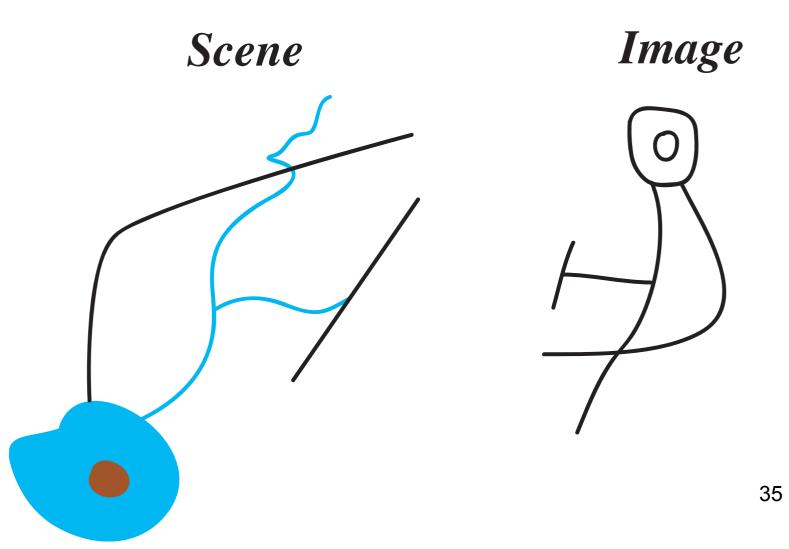
If we observe *selects*(*fred*, *art*_94) \land *selects*(*fred*, *art*_34), there are two minimal explanations:

{interested_in(fred, ai)}.
{interested_in(fred, information_highway),
 interested_in(fred, skiing)}.

Image interpretation

- > A scene is the world that the agent is in.
- > An image is what the agent sees.
- **Vision:** given an image try to determine the scene.
- Typically we know more about the *scene* \rightarrow *image* mapping than the *image* \rightarrow *scene* mapping.

Example Scene and Image



Scene and Image Primitives

Т

F

Scene Primitives	Image Primitives
land, water	region
river, road, shore	chain
joins(X, Y, E) $(E \in \{0, 1\}$ specifies which end of X) mouth(X, Y, E)	tee
cross(X, Y)	36 chi

Scene and image primitives (cont.)

Scene Primitives	Image Primitives
beside (C, R) C	bounds(C,R)
source (C, E)	open(C,E)
loop(C)	closed(C)
inside (C, R)	interior(C,R)
outside (C, R) O C R	exterior(C,R)

Axiomatizing the Scene \rightarrow Image map

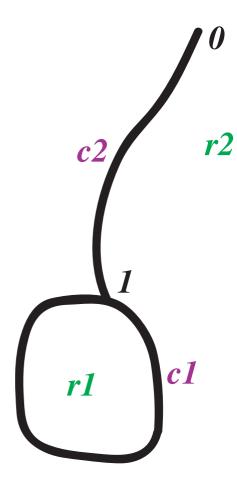
- $chain(X) \leftarrow river(X) \lor road(X) \lor shore(X).$
- $region(X) \leftarrow land(X) \lor water(X).$
- $tee(X, Y, E) \leftarrow joins(X, Y, E) \lor mouth(X, Y, E).$
- $chi(X, Y) \leftarrow cross(X, Y).$
- $open(X, N) \leftarrow source(X, N).$
- $closed(X) \leftarrow loop(X).$
- $interior(X, Y) \leftarrow inside(X, Y).$
- $exterior(X, Y) \leftarrow outside(X, Y).$
- assumable road(X), river(X), shore(X), land(X), ...
- assumable joins(X, Y, E), cross(X, Y), mouth(L, R, E). 38

- $false \leftarrow cross(X, Y) \land river(X) \land river(Y).$
- *false* \leftarrow *cross*(*X*, *Y*) \land (*shore*(*X*) \lor *shore*(*Y*)).
- *false* \leftarrow *mouth*(R, L1, 1) \land *river*(R) \land *mouth*(R, L2, 0).
- $start(R, N) \leftarrow river(R) \land road(Y) \land joins(R, Y, N).$ $start(X, Y) \leftarrow source(X, Y).$
- $false \leftarrow start(R, 1) \land river(R) \land start(R, 0).$
- *false* \leftarrow *joins*(R, L, N) \land *river*(R) \land (*river*(L) \lor *shore*(L)).
- *false* \leftarrow *mouth*(*X*, *Y*, *N*) \land (*road*(*X*) \lor *road*(*Y*)).
- *false* \leftarrow *source*(*X*, *N*) \land *shore*(*X*).
- $false \leftarrow joins(X, A, N) \land shore(X).$
- $false \leftarrow loop(X) \land river(X).$

Scene constraints (continued)

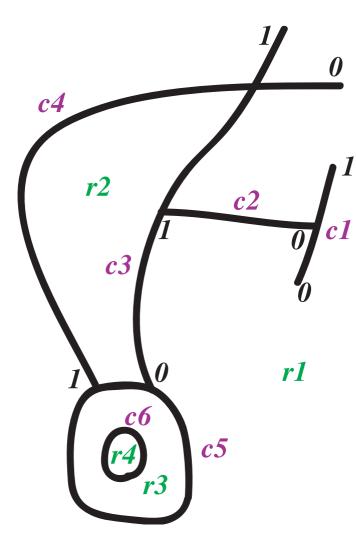
 $false \leftarrow shore(X) \land inside(X, Y) \land outside(X, Z) \land$ $land(Y) \wedge land(Z)$. $false \leftarrow shore(X) \land inside(X, Y) \land outside(X, Z) \land$ water(Z) \wedge water(Y). $false \leftarrow water(Y) \land beside(X, Y) \land$ $(road(X) \lor river(X)).$

Describing an image



 $chain(c1) \wedge chain(c2) \wedge$ $region(r1) \land region(r2) \land$ $tee(c2, c1, 1) \land$ *bounds*(c2, r2) \land *bounds*(c1, r1) \land *bounds*(c1, r2) \land *interior*(c1, r1) \land $exterior(c1, r2) \land open(c2, 0)$ $\wedge closed(c1)$

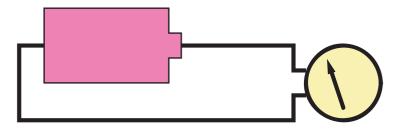
A more complicated image



 $chain(c1) \land open(c1, 0) \land$ $open(c1, 1) \land region(r1) \land$ *bounds*(c1, r1) \land *chain*(c2) \land $tee(c2, c1, 0) \land bounds(c2, r1)$ \wedge chain(c3) \wedge bounds(c3, r1) \wedge $region(r2) \land bounds(c3, r2) \land$ $chain(c5) \land closed(c5) \land$ *bounds*(c5, r2) \land *exterior*(c5, r2) \land *region*(r3) \land *bounds*(c5, r3) \land 42 *interior*(c5, r3) $\land \dots$

Parameterizing Assumables

Suppose we had a battery *b* connected to voltage meter:



To be able to explain a measurement of the battery voltage, we need to parameterize the assumables enough:

assumable flat(B, V).

assumable *tester_ok*.

 $measured_voltage(B, V) \leftarrow flat(B, V) \land tester_ok.$ $false \leftarrow flat(B, V) \land V > 1.2.$ ⁴³

Evidential and Causal Reasoning

- Much reasoning in AI can be seen as evidential reasoning, (observations to a theory) followed by causal reasoning (theory to predictions).
- **Diagnosis** Given symptoms, evidential reasoning leads to hypotheses about diseases or faults, these lead via causal reasoning to predictions that can be tested.
- **Robotics** Given perception, evidential reasoning can lead us to hypothesize what is in the world, that leads via causal reasoning to actions that can be executed. 44

Combining Evidential & Causal Reasoning

To combine evidential and causal reasoning, you can either

> Axiomatize from causes to their effects and

- \succ use abduction for evidential reasoning
- \succ use default reasoning for causal reasoning

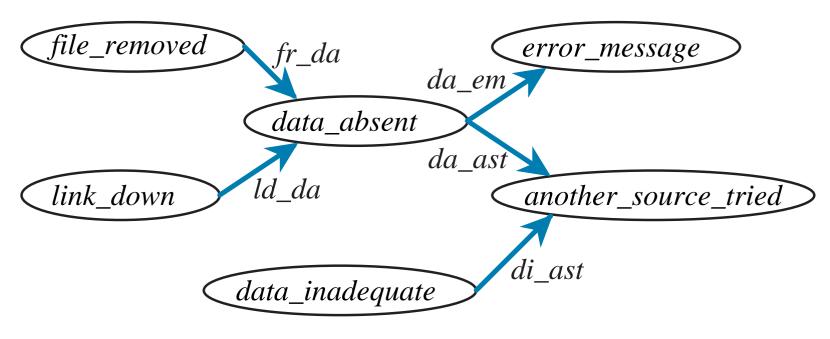
Axiomatize both

- \succ effects \longrightarrow possible causes (for evidential reasoning)
- \succ causes \longrightarrow effects (for causal reasoning)

use a single reasoning mechanism, such as default reasoning.

Combining abduction and default reasonin

- Representation:
 - > Axiomatize causally using rules.
 - > Have normality assumptions (defaults) for prediction
 - \succ other assumptions to explain observations
- **Reasoning:**
 - given an observation, use all assumptions to explain observation (find base causes)
 - use normality assumptions to predict from base causes explanations.



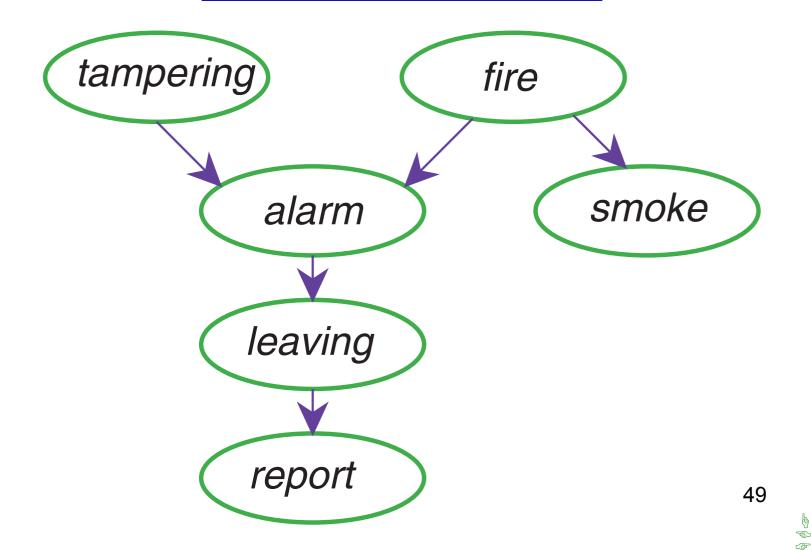
Why is the infobot trying another information source?

(Arrows are implications or defaults. Sources are assumable.)

Code for causal network

error_message \leftarrow data_absent \land da_em. another_source_tried \leftarrow data_absent \land da_ast another_source_tried \leftarrow data_inadequate \land di_ast. $data_absent \leftarrow file_removed \land fr_da.$ $data_absent \leftarrow link_down \land ld_da.$ default da_em, da_ast, di_ast, fr_da, ld_da. assumable *file_removed*. assumable link down. assumable *data_inadequate*. 48

Example: fire alarm



alarm \leftarrow tampering \land tampering_caused_alarm. default *tampering_caused_alarm*. assumable *tampering*. $alarm \leftarrow fire \land fire_caused_alarm.$ default *fire_caused_alarm*. assumable *tampering*. assumable *fire*. smoke \leftarrow fire \land fire_caused_smoke.

default *fire_caused_smoke*.

- ► If we observe *report* there are two minimal explanations:
 - \succ one with *tampering*
 - \succ one with *fire*
- If we observed just *smoke* there is one explanation
 (containing *fire*). This explanation makes no predictions about tampering.
- ➤ If we had observed *report* ∧ *smoke*, there is one minimal explanation, (containing *fire*).
 - The smoke explains away the tampering. There is no need to hypothesise *tampering* to explain report.