
1

1

Decision Trees
Decision trees are a popular method for classifying objects by means
of a sequence of tests of feature values following a tree structure.

Example :
Decision tree for classifying a
person as reading or skipping
a book based on several
attributes:
• author known or unknown
• thread new or old
• length long or short
• place at home or at work

length

thread

authorskips reads

long short

new old

reads

knownunknown

skips

place
homework

thread

author

reads
known unknown

skips

skips

new old

A decision tree is a tree where:
• the non-leaf nodes are labeled with attributes,
• all arcs out of a node labeled with attribute A are labelled with each of the

possible values of the attribute A,
• the leafs of the tree are labeled with classifications

2

Representing Decision Trees (1)

Decision trees can be represented by a nested IF-THEN-ELSE structure:

parent

son1 son2 son3

val1 val2 valN

IF succ(parent) = { }
THEN return(parent) ELSE
IF value(parent, object) = val1
THEN <IF-THEN-ELSE structure for subtree1> ELSE
IF value(parent, object) = val2
THEN <IF-THEN-ELSE structure for subtree2> ELSE
• • •
IF value(parent, object) = valN
THEN <IF-THEN-ELSE structure for subtreeN> ELSE

• • •

2

3

Representing Decision Trees (2)
Decision trees can be represented by rules in a logic program.

Each leaf of the decision tree gives rise to a rule
 leaf-value <- prop(Obj, <att1>, <val1>) ∧ ... ∧ prop(Obj, <attK>, <valK>)
where <attk> <valk> are all attribute-value pairs on the path from the leaf
node to the root of the decision tree.

length

thread

authorreads

short

new old

reads

unknown

skips

Example
The branch on the right gives rise to the
rules:

reads <- prop(Obj, thread, new) ∧
prop(Obj, length, short)

skips <- prop(Obj, author, unknown) ∧
prop(Obj, thread, old) ∧
prop(Obj, length, short)

reads <- prop(Obj, author, known) ∧
prop(Obj, thread, old) ∧
prop(Obj, length, short)

known

4

Learning Decision Trees

Example User Action Author Thread Length Where Read

e1 skips known new long home
e2 reads unknown new short work
e3 skips unknown old long work
e4 skips known old long home
e5 reads known new short home
e6 skips known old long work

Decision trees can be learnt from examples.

Note that in the examples, the class is an attribute like other attributes.
For learning a classifier from examples, one attribute has to be assigned
the role of the goal attribute.

A decision tree can provide distinct leaf nodes for all combinations of
attribute values.

A correct decision exists for a given set of examples, if there are no
examples which differ only in the goal attribute.

3

5

Learning Algorithm

Given a set of examples, and a set of attributes and a goal attribute.
A Stop if all examples have the same classification.

Otherwise, choose an attribute to split on.
B For each value of this attribute, build a subtree for those examples

with this attribute value and repeat A and B.

Algorithm for learning a decision tree:

Note that the choice of an attribute in step A is not specified.

What attribute choices will give a "good" decision tree?

Quality measures for decision trees:
• Depth of tree
• Number of nodes
• Expected number of steps given a probability distribution of the attributes

6

Extended Example Set

Example User Action Author Thread Length Where Read

e1 skips known new long home
e2 reads unknown new short work
e3 skips unknown old long work
e4 skips known old long home
e5 reads known new short home
e6 skips known old long work
e7 skips unknown old short work
e8 reads unknown new short work
e9 skips known old long home
e10 skips known new long work
e11 skips unknown old short home
e12 skips known new long work
e13 reads known old short home
e14 reads known new short work
e15 reads known new short home
e16 reads known old short work
e17 reads known new short home
e18 reads unknown new short work

4

7

Effect of Attribute Choices
Each attribute effects a split of the example set according to the attribute
values.

Example:
Splits effected by different choices of first attribute for the extended
example set

length skips 9
reads 9

long short

skips 7
reads 0

skips 2
reads 9

thread skips 9
reads 9

new old

skips 3
reads 7

skips 6
reads 2

For a small decision tree, we want to choose an attribute where
• the example set is split into subsets as evenly as possible
• the classification within each subset is distributed as unevenly as possible

Which attribute will give a shorter decision tree?

8

Maximizing Information Gain
Select attributes in the order of maximal information gain.

H(G) entropy of source regarding goal attribute G with distribution
according to example set

H(G|A=ai) entropy of same source based on subset of examples where
attribute A has value ai

qi fraction of example set where attribute A has value ai

IG information gain by asking for the attribute value of A

IG = H(G) − qi

i
∑ H(G| A = ai)

5

9

Splitting with Maximal Information Gain
Consider extended example set and empirical probability distributions.

H(G) = 1 9 skips and 9 reads examples
Test on author
author = known: [e1, e4, e5, e6, e9, e10, e12, e13, e14, e15, e16, e17]
author = unknown: [e2, e3, e7, e8, e11, e18]
IG = H(G) - 12/18 H(G|author = known) - 6/18 H(G|author = unknown) = 0

best
choice!

Test on thread
thread = new: [e1, e2, e5, e8, e10, e12, e14, e15, e17, e18]
thread = old: [e3, e4, e6, e7, e9, e11, e13, e16]
H(G|thread=new) = - 3/10 log23/10 - 7/10 log27/10 = 0,881
H(G|thread=old) = - 6/8 log26/8 - 2/8 log22/8 = 0,811
IG = H(G) - 10/18 H(G|thread=new) - 8/18 H(G|thread=old) = 0,150

Test on length
length = long: [e1, e3, e4, e6, e9, e10, e12]
length = short: [e2, e5, e7, e8, e11, e13, e14, e15, e16, e17, e18]
H(G|length=long) = 0
H(G|length=short) = - 2/11 log22/11 - 9/11 log29/11 = 0,684
IG = H(G) - 7/18 H(G|length=long) - 11/18 H(G|length=short) = 0,582

10

Classification Errors
Decision trees may obtain zero error on a set of training examples, but may
misclassify examples not contained in the training set.
Training error: probability of error for training examples
True error: probability of error for unrestricted examples

Overfitting of a decision tree to training data is an important source for errors.

Example:
male young german not-bald
female old german not-bald
male old english bald
male old german bald

age

nationality

bald

not-bald

oldyoung

gender

german english

not-bald

female male
bald

Unfortunately, old english females will be
classified as bald.

Overfitting is due to insufficient
generalization of examples.

6

11

Inconsistent Example Sets

An example set is inconsistent if it contains examples which differ only
by the value of the goal attribute.

Reasons for inconsistency:
• too few or irrelevant attributes
• noisy data

Decision trees may reflect inconsistent examples by assigning probability
values to conflicting outcomes at leaf nodes.

e1 male young not-bald
e2 female old not-bald
e3 male old bald
e4 female young not-bald
e5 male young bald

age

bald

not-bald

oldyoung

gender

bold 0,5
not-bald 0,5

femalemale

12

Summary of Decision Trees

• Decision trees represent classifiers which are easy to understand
and to implement.

• A decision tree can represent any discrete function over an N-
dimensional space of discrete-valued attributes.

• A consistent example set allows a decision with zero training error.
• A decision tree can be learnt from examples. There may be many

possible decision trees for an example set.
• A good heuristic for obtaining a small decision tree is to select

attributes in the order of maximal information gain.
• If the example set is small while the number of attributes is large,

the classifier may cause a large true error due to overfitting.

7

13

Classification with
Artificial Neural Networks

Artificial Neural Networks (NN) are composed of units which mimick the
behaviour of natural neural networks.

cell j

weights wij output signal of cell j
oj(t) = fj (Σ wij oi(t))

cell i

output signal
of cell i

• The output of each unit is a function f of the weighted sum of
input signals

• Weights can be learnt from examples
• NNs can approximate any function

14

Multilayer Feed-forward Nets

.

. . .

. . .output units

hidden units

input units

Example:
3-layer net

• each unit of a layer is
connected to each unit
of the layer below

• units within a layer are
not connected

• activation function f is
differentiable (for
learning)

Classifiers are most frequently realized by multilayer feed-forward networks

8

15

Natural Neural Networks

• ca. 1011 neurons in human brain
• ca. 104 inputs for each neuron

(average in humans)
• Spiked output
• Complex dynamical behaviour

(e.g. cells fatigue)
• Various types of activation

functions
• Several different cell types (e.g.

multiplicative behaviour)
• Learning by mutual

reinforcement

16

Example: Character Recognition with a
Neural Net

0 1 2 3 4 5 6 7 8 9

output units

Schematic drawing shows 3-layer feed-forward net:

hidden units

input units

• input units are activated by
sensors and feed hidden units

• hidden units feed output units
• each unit receives weighted

sum of incoming signals
(weights not shown)

How can a large number of
weights be adjusted to achieve
character recognition?

9

17

Learning by Backpropagation

Supervised learning procedure:
• present example and determine output error signals
• adjust weights which contribute to errors

input pattern p

nominal
output
signal tpj

actual
output
signal opj

cell j

cell i

Adjusting weights:
• Error signal of output cell j for pattern p is

δpj = (tpj - opj) fj´(netpj)
fj´() is the derivative of the activation function f()

• Determine error signal δpi for internal cell i recursively from
error signals of all cells k to which cell i contributes.
δpi = fi´(netpi) Σk δpkwik

• Modify all weights: Δpwij = ηδpjopi η is a positive constant

The procedure must be repeated many times until the weights
are "optimally" adjusted. There is no general convergence
guarantee.

wij

18

Activation Functions

An activation function must be differentiable for Backpropagation.
Typical activation function ("sigmoid"):

10

19

Typical Applications for Neural Networks

NNs are cash cows (Goldesel) for engineers:

Feed examples and obtain classifier!

Useful primarily for applications which are difficult to analyze for humans:

examples

classifier

• Speech recognition, e.g. determining the identity of a speaker
• Lipreading
• Image understanding, e.g. classifying x-rayed luggage as suspicious
• Event recognition, e.g. dangerous patterns in air traffic
• Predict which job an applicant is best suited for
• Diagnose diseases

20

Perceptrons (1)
A perceptron is a simple computational model (similar to NN) for combining
local Boolean operations.
Investigation by Minsky and Papert (Perceptrons, 1969) showed that there
are classification tasks which cannot be accomplished.

ϕ1
ϕ2

ϕn

S/W-Retina

Boole'sche
Funktionen

lineare

Schwellwert=
zelle

Ω

Boolean
functions

linear
threshold
element

0
1

B/W Retina

ϕi Boolean functions with local
support in the retina:
- limited diameter
- limited number of cells
output is 0 or 1

Ω compares weighted sum of
the ϕi with fixed threshold θ:

Ω = 1 if Σ wiϕi > θ
0 otherwise

11

21

Perceptrons (2)
A limited-diameter perceptron cannot determine connectedness

Assume perceptron with maximal diameter d for the support of each ji.
Consider 4 shapes as below with a < d and b >> d.

a
b

Boolean operators may distinguish 5 local situations:

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

ϕ5 is clearly irrelevant for
distinguishing between the
2 connected and the 2
disconnected shapes

For Ω to exist, we must have:
w1 ϕ1 + w4 ϕ4 < θ
w2 ϕ2 + w3 ϕ3 < θ

w2 ϕ2 + w4 ϕ4 > θ
w1 ϕ1 + w3 ϕ3 > θ

Σ wi ϕi < 2θ Σ wi ϕi > 2θ

contradiction, hence
Ω cannot exist

22

Summary of Artificial Neural Networks

• Artificial neural networks (NNs) can approximate continuous-
valued functions of multiple continous-valued input variables.

• NNs are attractive because they can be taught by examples.
Backpropagation is the basic learning scheme.

• Learning may require thousands of examples.
• Too many hidden units for too few examples may cause overfitting

and hence bad performance.
• Powerful NNs may require several layers of hidden units. It is

difficult to interpret the meaning of hidden units after learning.
• It is difficult to judge the capabilities and weaknesses of a NN

except by testing examples.

