





| Example | User Action  | Author  | Thread | Length | Where Read                      |
|---------|--------------|---------|--------|--------|---------------------------------|
| e1      | skips        | known   | new    | long   | home                            |
| e2      | reads        | unknown | new    | short  | work                            |
| e3      | skips        | unknown | old    | long   | work                            |
| e4      | skips        | known   | old    | long   | home                            |
| e5      | reads        | known   | new    | short  | home                            |
| e6      | skips        | known   | old    | long   | work                            |
|         | ne examples, |         |        |        | er attributes.<br>o be assigned |

## **Learning Algorithm**

Algorithm for learning a decision tree:

Given a set of examples, and a set of attributes and a goal attribute.

- A Stop if all examples have the same classification.
- Otherwise, choose an attribute to split on.
- B For each value of this attribute, build a subtree for those examples with this attribute value and repeat A and B.

Note that the choice of an attribute in step A is not specified.

What attribute choices will give a "good" decision tree?

Quality measures for decision trees:

- Depth of tree
- Number of nodes
- Expected number of steps given a probability distribution of the attributes

| Extended Example Set |             |         |        |        |           |  |  |  |
|----------------------|-------------|---------|--------|--------|-----------|--|--|--|
| Example              | User Action | Author  | Thread | Length | Where Rea |  |  |  |
| e1                   | skips       | known   | new    | long   | home      |  |  |  |
| e2                   | reads       | unknown | new    | short  | work      |  |  |  |
| e3                   | skips       | unknown | old    | long   | work      |  |  |  |
| e4                   | skips       | known   | old    | long   | home      |  |  |  |
| e5                   | reads       | known   | new    | short  | home      |  |  |  |
| e6                   | skips       | known   | old    | long   | work      |  |  |  |
| e7                   | skips       | unknown | old    | short  | work      |  |  |  |
| e8                   | reads       | unknown | new    | short  | work      |  |  |  |
| e9                   | skips       | known   | old    | long   | home      |  |  |  |
| e10                  | skips       | known   | new    | long   | work      |  |  |  |
| e11                  | skips       | unknown | old    | short  | home      |  |  |  |
| e12                  | skips       | known   | new    | long   | work      |  |  |  |
| e13                  | reads       | known   | old    | short  | home      |  |  |  |
| e14                  | reads       | known   | new    | short  | work      |  |  |  |
| e15                  | reads       | known   | new    | short  | home      |  |  |  |
| e16                  | reads       | known   | old    | short  | work      |  |  |  |
| e17                  | reads       | known   | new    | short  | home      |  |  |  |
| e18                  | reads       | unknown | new    | short  | work      |  |  |  |

5

















## **Natural Neural Networks**

- ca. 10<sup>11</sup> neurons in human brain
- ca. 10<sup>4</sup> inputs for each neuron (average in humans)
- · Spiked output
- Complex dynamical behaviour (e.g. cells fatigue)
- Various types of activation functions
- Several different cell types (e.g. multiplicative behaviour)
- Learning by mutual reinforcement



## 15

## Example: Character Recognition with a Neural Net

Schematic drawing shows 3-layer feed-forward net:













