Knowledge Representation for Computers

- The main problem with Semantic Networks is their appeal to human intuitions rather than to logic-based definitions.
- Human intuitions may differ according to cultural heritage, environmental conditioning, professional education, application context etc.

=> misunderstandings, wrong inferences, inconsistent knowledge

- Knowledge-based systems and large-scale knowledge management require that computers process knowledge unambiguously without human knowledge interpretation:
 - Assistance systems
 - Corporate knowledge management
 - Knowledge integration in a globalized economy
 - The Semantic Web

Description Logics for Knowledge Representation

- DLs are a family of knowledge-representation formalisms
- Decidable subset of FOL
- · Object-centered, roles and features (binary relations)
- Necessary vs. sufficient attributes
- Inference services
 - subsumption check
 - consistency check
 - classification
 - abstraction
 - default reasoning
 - spatial and temporal reasoning
- · Guaranteed correctness, completeness, and decidability properties
- Highly optimized implementations (e.g. RACER)
- Provides inferences for Semantic Web language OWL

Development of Description Logics

There exist several experimental and commercial developments of DLs, among them

- KL-ONE first conception of a DL (1985)
- CLASSIC commercial implementation by AT&T
- LOOM experimental system at USC
- FaCT experimental and commercial system (Horrocks, Manchester)
- RACER experimental and commercial system (Haarslev & Moeller)

There is still active research on DLs:

- Extending the expressivity of concept languages
- Decidability and tractability of inference services
- Integration of predicates over concrete domains (e.g. numbers)
- Adapting to Semantic Web requirements
- Highly optimized implementations
- Developing new inference services (e.g. for scene interpretation)

- Highly expressive DL ALCQHI_R+
 - Role hierarchies with multiple parents
 - Qualified number restrictions (\geq n r C) (\leq n r C),
 - Inverse roles, transitive Roles
 - Integers and reals
- Available as product RacerPro (http://www.racer-systems.com)
 - Reasoner for the Semantic Web languages OWL/RDF
 - Evaluation copy for university research
 - Comprehensive manual
- Developed in the Cognitive Systems Laboratory at Hamburg
 University

Research applications in

- information management: TV-Assistant
- content-based image retrieval
- scene interpretation

C concept term CN concept name R role term RN role name C -> CN *top* *bottom* (not C) (and C1 Cn) (or C1 Cn) (or C1 Cn) (some R C) (all R C) (at-least n R) (at-nost n R) (at-nost n R C) (at-most n R C)	CER Concept Lan concept definition (define-concept CN C) concept axioms (define-primitive-concept CN C) (implies C1 C2) (equivalent C1 C2) (disjoint C1 Cn) roles R -> RN (RN role-props) role-props -> ((:transitive t) (:feature t) (:symmetric t)	concrete-domain concepts AN attribute name CDC -> (a AN) (an AN) (no AN) (min AN integer) (max AN integer) (> aexpr aexpr) (> aexpr aexpr) (< aexpr aexpr) (< aexpr aexpr) (= aexpr aexpr) (= aexpr aexpr) (= aexpr aexpr) aexpr -> AN real (+ aexpr1 aexpr1*) aexpr1 -> real
(at-least <i>n R C</i>) (at-most <i>n R C</i>) (exactly <i>n R C</i>) <i>CDC</i>	(:symmetric t) (:reflexive t) (:inverse RN) (:domain C) (:range C))	aexpr1 aexpr1 -> real AN (* real AN)

Concept expressions of a DL describe classes of entities in terms of properties (unary relations) and roles (binary relations).				
Main building blocks	are primitive oder defined concepts.			
Primitive concepts:	concept => satisfied properties and relations satisfied properties and relations are <u>necessary</u> conditions for an object to belong to a class			
Defined concepts:	concept <=> satisfied properties and relations satisfied properties and relations are <u>necessary and sufficient</u> conditions for an object to belong to a class			
Primitive concept "po	erson": nammal (some has-gender (or female male))))			
(Implies person (and) Defined concept "part	nammal (some has-gender (or female male)))) ent":			
(equivalent parent (an	d person (some has-child person)))			

Features	functional roles with at most one role filler for each individual
Transitive roles	roles are transitively closed for a transitive role r: $r(i_1, i_2) \land r(i_2, i_3) => r(i_1, i_3)$
Role hierarchies	Specification of super- and subroles
Domain restriction	simulated in RACER by (implies (some RN *top*) C
Range restriction	cimulated in DACED by (implies \$ten\$ (all DN C))

Example of a TBox				
(signature :atomic-concepts (person human female male woma mother father grandmother aunt uncle :roles ((has-child :parent has-descendant) (has-descendant :transitive t) (has-sibling) (has-sister :parent has-sibling) (has-brother :parent has-sibling) (has-gender :feature t)))	an man parent sister brother) Signature of TBox			
(implies *top* (all has-child person)) (implies (some has-child *top*) parent) (implies (some has-sibling *top*) (or brother sister)) (implies *top* (all has-sibling (or sister brother))) (implies *top* (all has-sister (some has-gender female))) (implies *top* (all has-brother (some has-gender male)))	Domain and range restrictions for roles			
<pre>(implies person (and human (some has-gender (or female male)))) (disjoint female male) (implies woman (and person (some has-gender female))) (implies man (and person (some has-gender male))) (equivalent parent (and person (some has-child person))) (equivalent mother (and woman parent)) (equivalent father (and man parent)) (equivalent grandmother (and mother (some has-child (some has-cl (equivalent aunt (and woman (some has-sibling parent)))) (equivalent brother (and man (some has-sibling person)))) (equivalent sister (and woman (some has-sibling person))))</pre>	Axioms for relating concept names			

	Formal Semantics of	
	Concept Expressions	
D	Set of all possible domain objects	
E[C]⊆D	Extension of a concept expression C (represents meaning of C)	
E[RN]⊆ D×D	Extension of a role RN (represents meaning of RN)	
Formal semar	itics of concept operations:	
E[*bottom*] =	{}	
E[(and C ₁ C	C _n)] = E[C₁] ∩ ∩ E[C _n]	
E[(or C ₁ C _n)]=E[C₁]∪ ∪E[Cₙ]	
E[(all RN C)]	$= \left\{ x \mid \forall (x, y) \in E[RN] \Rightarrow y \in E[C] \right\}$	
E[(some RN 0	C)]= {x I ∃(x, y)∈E[RN]∧y∈E[C]}	
		14

Concrete Domain Example

(from RacerPro-User-Guide)

(signature :atomic-concepts (... teenager) :roles (...) :attributes ((integer age) (real temperature-celsius) (real temperature-fahrenheit)))

(equivalent teenager (and human (min age 16))) (equivalent old-teenager (and human (min age 18))) (equivalent human-with-fever (and human (>= temperature-celsius 38.5)) (equivalent seriously-ill-human (and human (>= temperature-celsius 42.0)))

RACER concludes that - the concept "old-teenager" is subsumed by "teenager" - the concept "seriously-ill" is subsumed by "human-with-fever"

15

Useful Extensions

<u>Feature chains</u>: (compose F1 ... Fn) short: (F1 o ... o Fn) The composition of features F1 ... Fn is a feature whose fillers are the fillers of Fn applied to the fillers of Fn-1 applied to ... the fillers of F1.

<u>Feature (chain) agreement</u>: (same-as F1 F2) short: (= F1 F2) Concept expression for elements which possess the same fillers for features F1 and F2.

Example: (same-as (has-plate o has-colour) (has-saucer o has-colour)) Requirement for a cover that plate and saucer have the same colour

Cannot be combined with expressive DLs without jeopardising decidability!

Instead of features, also roles may be composed, and a subset operator relates role-fillers similar to same-as for features.

Role-value map: (subset R1 R2)

Concept expression of elements where the fillers of role R1 are a subset of the fillers of role R2.

Causes undecidability even in DLs with low expressivity (e.g. CLASSIC).

21

